Cargando…

The antiapoptotic OPA1/Parl couple participates in mitochondrial adaptation to heat shock()

The mitochondria-shaping protein optic atrophy 1 (OPA1) has genetically distinguishable roles in mitochondrial morphology and apoptosis. The latter depends on the presenilin associated rhomboid like (PARL) protease, essential for the accumulation of a soluble intermembrane space form of OPA1 (IMS-OP...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanjuán Szklarz, Luiza K., Scorrano, Luca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Pub. Co 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686154/
https://www.ncbi.nlm.nih.gov/pubmed/22579715
http://dx.doi.org/10.1016/j.bbabio.2012.05.001
Descripción
Sumario:The mitochondria-shaping protein optic atrophy 1 (OPA1) has genetically distinguishable roles in mitochondrial morphology and apoptosis. The latter depends on the presenilin associated rhomboid like (PARL) protease, essential for the accumulation of a soluble intermembrane space form of OPA1 (IMS-OPA1). Here we show that OPA1 and PARL participate in the heat shock response, a stereotypical cellular process of adaptation to thermal stress. Upon heat shock, long forms of OPA1 are lost and mitochondria fragment. However, mitochondrial fusion is dispensable to maintain viability, whereas IMS-OPA1 is required. Upon conditioning—a process of mild heat shock and recovery—IMS-OPA1 accumulates, OPA1 oligomers increase and mitochondria release less cytochrome c, ultimately resulting in cellular resistance to subsequent apoptotic inducers. In Parl(−/−) cells accumulation of IMS-OPA1 is blunted and conditioning fails to protect from cytochrome c release and apoptosis. Thus, the OPA1/PARL dependent pathway of cristae remodeling is implicated in heat shock. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).