Cargando…

Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver

Vectors based on adeno-associated virus (AAV) are effective in gene delivery in vivo. Tissue-specific gene expression is often needed to minimize ectopic expression in unintended cells and undesirable consequences. Here we investigated if incorporation of target sequences of tissue-specific microRNA...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiao, Chunping, Yuan, Zhenhua, Li, Jianbin, He, Bo, Zheng, Hui, Mayer, Christina, Li, Juan, Xiao, Xiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686499/
https://www.ncbi.nlm.nih.gov/pubmed/21150938
http://dx.doi.org/10.1038/gt.2010.157
Descripción
Sumario:Vectors based on adeno-associated virus (AAV) are effective in gene delivery in vivo. Tissue-specific gene expression is often needed to minimize ectopic expression in unintended cells and undesirable consequences. Here we investigated if incorporation of target sequences of tissue-specific microRNA (miRNA) into AAV vectors could inhibit ectopic expression in tissues such as the liver and hematopoietic cells. First we inserted liver-specific miR-122 target sequences (miR-122T) into the 3′ untranslated region (UTR) of a number of AAV vectors. After intravenous delivery in mice, we found that 5 copies of the 20mer miR-122T reduced liver expression of luciferase by 50-fold and β-galactosidase (LacZ) by 70-fold. Five copies of miR-122T also reduced mRNA levels of a secretable protein (myostatin propeptide) from the AAV vector plasmid by 23–fold in the liver. However, gene expression in other tissues including the heart was not inhibited. Similarly, we inserted 4 copies of miR-142-3pT or miR-142-5pT, both hematopoietic lineage-specific, into the 3′ UTR of the AAV-luciferase vector. We wished to see if they could prolong transgene expression by inhibiting expression in antigen-presenting cells. However, in vivo luciferase gene expression in major tissues declined with time regardless of the miR-142 target sequences used. Quantitative analysis of the vector DNA in various tissues revealed that the decline of transgene expression in vivo was mainly due to promoter shut-off other than loss of AAV-transduced cells by immune destruction. Moreover, transgene expression was not detected in circulating mononuclear cells after delivering AAV9 vector with or without miR142T. These results demonstrate that live-specific miR-122 target sequence in AAV vectors was highly efficient in reducing liver expression, whereas hematopoietic miR-142 target sequences were ineffective in preventing decline of AAV vector gene expression in non-hematopoietic tissues resulted from promoter shut-off.