Cargando…
Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease
BACKGROUND AND PURPOSE: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein. We have previously demonstrated that the cell signalling of the metabotropic glutamate receptor 5 (mGluR5) is altered in a mouse m...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3687670/ https://www.ncbi.nlm.nih.gov/pubmed/23489026 http://dx.doi.org/10.1111/bph.12164 |
_version_ | 1782273967617212416 |
---|---|
author | Doria, JG Silva, FR Souza, JM Vieira, LB Carvalho, TG Reis, HJ Pereira, GS Dobransky, T Ribeiro, FM |
author_facet | Doria, JG Silva, FR Souza, JM Vieira, LB Carvalho, TG Reis, HJ Pereira, GS Dobransky, T Ribeiro, FM |
author_sort | Doria, JG |
collection | PubMed |
description | BACKGROUND AND PURPOSE: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein. We have previously demonstrated that the cell signalling of the metabotropic glutamate receptor 5 (mGluR5) is altered in a mouse model of HD. Although mGluR5-dependent protective pathways are more activated in HD neurons, intracellular Ca(2+) release is also more pronounced, which could contribute to excitotoxicity. In the present study, we aim to investigate whether mGluR5 positive allosteric modulators (PAMs) could activate protective pathways without triggering high levels of Ca(2+) release and be neuroprotective in HD. EXPERIMENTAL APPROACH: We performed a neuronal cell death assay to determine which drugs are neuroprotective, Western blot and Ca(2+) release experiments to investigate the molecular mechanisms involved in this neuroprotection, and object recognition task to determine whether the tested drugs could ameliorate HD memory deficit. KEY RESULTS: We find that mGluR5 PAMs can protect striatal neurons from the excitotoxic neuronal cell death promoted by elevated concentrations of glutamate and NMDA. mGluR5 PAMs are capable of activating Akt without triggering increased intracellular Ca(2+) concentration ([Ca(2+)](i)); and Akt blockage leads to loss of PAM-mediated neuroprotection. Importantly, PAMs' potential as drugs that may be used to treat neurodegenerative diseases is highlighted by the neuroprotection exerted by mGluR5 PAMs on striatal neurons from a mouse model of HD, BACHD. Moreover, mGluR5 PAMs can activate neuroprotective pathways more robustly in BACHD mice and ameliorate HD memory deficit. CONCLUSIONS AND IMPLICATIONS: mGluR5 PAMs are potential drugs that may be used to treat neurodegenerative diseases, especially HD. |
format | Online Article Text |
id | pubmed-3687670 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-36876702013-07-12 Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease Doria, JG Silva, FR Souza, JM Vieira, LB Carvalho, TG Reis, HJ Pereira, GS Dobransky, T Ribeiro, FM Br J Pharmacol Research Papers BACKGROUND AND PURPOSE: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein. We have previously demonstrated that the cell signalling of the metabotropic glutamate receptor 5 (mGluR5) is altered in a mouse model of HD. Although mGluR5-dependent protective pathways are more activated in HD neurons, intracellular Ca(2+) release is also more pronounced, which could contribute to excitotoxicity. In the present study, we aim to investigate whether mGluR5 positive allosteric modulators (PAMs) could activate protective pathways without triggering high levels of Ca(2+) release and be neuroprotective in HD. EXPERIMENTAL APPROACH: We performed a neuronal cell death assay to determine which drugs are neuroprotective, Western blot and Ca(2+) release experiments to investigate the molecular mechanisms involved in this neuroprotection, and object recognition task to determine whether the tested drugs could ameliorate HD memory deficit. KEY RESULTS: We find that mGluR5 PAMs can protect striatal neurons from the excitotoxic neuronal cell death promoted by elevated concentrations of glutamate and NMDA. mGluR5 PAMs are capable of activating Akt without triggering increased intracellular Ca(2+) concentration ([Ca(2+)](i)); and Akt blockage leads to loss of PAM-mediated neuroprotection. Importantly, PAMs' potential as drugs that may be used to treat neurodegenerative diseases is highlighted by the neuroprotection exerted by mGluR5 PAMs on striatal neurons from a mouse model of HD, BACHD. Moreover, mGluR5 PAMs can activate neuroprotective pathways more robustly in BACHD mice and ameliorate HD memory deficit. CONCLUSIONS AND IMPLICATIONS: mGluR5 PAMs are potential drugs that may be used to treat neurodegenerative diseases, especially HD. Blackwell Publishing Ltd 2013-06 2013-05-27 /pmc/articles/PMC3687670/ /pubmed/23489026 http://dx.doi.org/10.1111/bph.12164 Text en British Journal of Pharmacology © 2013 The British Pharmacological Society |
spellingShingle | Research Papers Doria, JG Silva, FR Souza, JM Vieira, LB Carvalho, TG Reis, HJ Pereira, GS Dobransky, T Ribeiro, FM Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease |
title | Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease |
title_full | Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease |
title_fullStr | Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease |
title_full_unstemmed | Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease |
title_short | Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease |
title_sort | metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of huntington's disease |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3687670/ https://www.ncbi.nlm.nih.gov/pubmed/23489026 http://dx.doi.org/10.1111/bph.12164 |
work_keys_str_mv | AT doriajg metabotropicglutamatereceptor5positiveallostericmodulatorsareneuroprotectiveinamousemodelofhuntingtonsdisease AT silvafr metabotropicglutamatereceptor5positiveallostericmodulatorsareneuroprotectiveinamousemodelofhuntingtonsdisease AT souzajm metabotropicglutamatereceptor5positiveallostericmodulatorsareneuroprotectiveinamousemodelofhuntingtonsdisease AT vieiralb metabotropicglutamatereceptor5positiveallostericmodulatorsareneuroprotectiveinamousemodelofhuntingtonsdisease AT carvalhotg metabotropicglutamatereceptor5positiveallostericmodulatorsareneuroprotectiveinamousemodelofhuntingtonsdisease AT reishj metabotropicglutamatereceptor5positiveallostericmodulatorsareneuroprotectiveinamousemodelofhuntingtonsdisease AT pereirags metabotropicglutamatereceptor5positiveallostericmodulatorsareneuroprotectiveinamousemodelofhuntingtonsdisease AT dobranskyt metabotropicglutamatereceptor5positiveallostericmodulatorsareneuroprotectiveinamousemodelofhuntingtonsdisease AT ribeirofm metabotropicglutamatereceptor5positiveallostericmodulatorsareneuroprotectiveinamousemodelofhuntingtonsdisease |