Cargando…
Validating a Coarse-Grained Potential Energy Function through Protein Loop Modelling
Coarse-grained (CG) methods for sampling protein conformational space have the potential to increase computational efficiency by reducing the degrees of freedom. The gain in computational efficiency of CG methods often comes at the expense of non-protein like local conformational features. This coul...
Autores principales: | MacDonald, James T., Kelley, Lawrence A., Freemont, Paul S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688807/ https://www.ncbi.nlm.nih.gov/pubmed/23824634 http://dx.doi.org/10.1371/journal.pone.0065770 |
Ejemplares similares
-
Multiscale Coarse-Graining of the Protein Energy Landscape
por: Hills, Ronald D., et al.
Publicado: (2010) -
Coarse-Grained Prediction of RNA Loop Structures
por: Liu, Liang, et al.
Publicado: (2012) -
Machine learning coarse-grained potentials of protein thermodynamics
por: Majewski, Maciej, et al.
Publicado: (2023) -
Solvation free energies and partition coefficients with the coarse-grained and hybrid all-atom/coarse-grained MARTINI models
por: Genheden, Samuel
Publicado: (2017) -
Potentials 'R'Us web-server for protein energy estimations with coarse-grained knowledge-based potentials
por: Feng, Yaping, et al.
Publicado: (2010)