Cargando…
Cooperative Assembly of a Protein-DNA Filament for Nonhomologous End Joining
Nonhomologous end joining repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. Ku, XRCC4/Ligase IV (XL), and XLF have a remarkable mismatched end (MEnd) ligase activity, particularly for ends with mismatched 3′ overhangs, but the mechanism has remained obscure. Her...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689955/ https://www.ncbi.nlm.nih.gov/pubmed/23620595 http://dx.doi.org/10.1074/jbc.M113.464115 |
_version_ | 1782274330597523456 |
---|---|
author | Tsai, Chun J. Chu, Gilbert |
author_facet | Tsai, Chun J. Chu, Gilbert |
author_sort | Tsai, Chun J. |
collection | PubMed |
description | Nonhomologous end joining repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. Ku, XRCC4/Ligase IV (XL), and XLF have a remarkable mismatched end (MEnd) ligase activity, particularly for ends with mismatched 3′ overhangs, but the mechanism has remained obscure. Here, we showed XL required Ku to bind DNA, whereas XLF required both Ku and XL to bind DNA. We detected cooperative assembly of one or two Ku molecules and up to five molecules each of XL and XLF into a Ku-XL-XLF-DNA (MEnd ligase-DNA) complex. XLF mutations that disrupted its interactions with XRCC4 or DNA also disrupted complex assembly and end joining. Together with published co-crystal structures of truncated XRCC4 and XLF proteins, our data with full-length Ku, XL, and XLF bound to DNA indicate assembly of a filament containing Ku plus alternating XL and XLF molecules. By contrast, in the absence of XLF, we detected cooperative assembly of up to six molecules each of Ku and XL into a Ku-XL-DNA complex, consistent with a filament containing alternating Ku and XL molecules. Despite a lower molecular mass, MEnd ligase-DNA had a lower electrophoretic mobility than Ku-XL-DNA. The anomalous difference in mobility and difference in XL to Ku molar ratio suggests that MEnd ligase-DNA has a distinct structure that successfully aligns mismatched DNA ends for ligation. |
format | Online Article Text |
id | pubmed-3689955 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-36899552013-06-28 Cooperative Assembly of a Protein-DNA Filament for Nonhomologous End Joining Tsai, Chun J. Chu, Gilbert J Biol Chem DNA and Chromosomes Nonhomologous end joining repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. Ku, XRCC4/Ligase IV (XL), and XLF have a remarkable mismatched end (MEnd) ligase activity, particularly for ends with mismatched 3′ overhangs, but the mechanism has remained obscure. Here, we showed XL required Ku to bind DNA, whereas XLF required both Ku and XL to bind DNA. We detected cooperative assembly of one or two Ku molecules and up to five molecules each of XL and XLF into a Ku-XL-XLF-DNA (MEnd ligase-DNA) complex. XLF mutations that disrupted its interactions with XRCC4 or DNA also disrupted complex assembly and end joining. Together with published co-crystal structures of truncated XRCC4 and XLF proteins, our data with full-length Ku, XL, and XLF bound to DNA indicate assembly of a filament containing Ku plus alternating XL and XLF molecules. By contrast, in the absence of XLF, we detected cooperative assembly of up to six molecules each of Ku and XL into a Ku-XL-DNA complex, consistent with a filament containing alternating Ku and XL molecules. Despite a lower molecular mass, MEnd ligase-DNA had a lower electrophoretic mobility than Ku-XL-DNA. The anomalous difference in mobility and difference in XL to Ku molar ratio suggests that MEnd ligase-DNA has a distinct structure that successfully aligns mismatched DNA ends for ligation. American Society for Biochemistry and Molecular Biology 2013-06-21 2013-04-25 /pmc/articles/PMC3689955/ /pubmed/23620595 http://dx.doi.org/10.1074/jbc.M113.464115 Text en © 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version full access. Creative Commons Attribution Unported License (http://creativecommons.org/licenses/by/3.0/) applies to Author Choice Articles |
spellingShingle | DNA and Chromosomes Tsai, Chun J. Chu, Gilbert Cooperative Assembly of a Protein-DNA Filament for Nonhomologous End Joining |
title | Cooperative Assembly of a Protein-DNA Filament for Nonhomologous End Joining |
title_full | Cooperative Assembly of a Protein-DNA Filament for Nonhomologous End Joining |
title_fullStr | Cooperative Assembly of a Protein-DNA Filament for Nonhomologous End Joining |
title_full_unstemmed | Cooperative Assembly of a Protein-DNA Filament for Nonhomologous End Joining |
title_short | Cooperative Assembly of a Protein-DNA Filament for Nonhomologous End Joining |
title_sort | cooperative assembly of a protein-dna filament for nonhomologous end joining |
topic | DNA and Chromosomes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689955/ https://www.ncbi.nlm.nih.gov/pubmed/23620595 http://dx.doi.org/10.1074/jbc.M113.464115 |
work_keys_str_mv | AT tsaichunj cooperativeassemblyofaproteindnafilamentfornonhomologousendjoining AT chugilbert cooperativeassemblyofaproteindnafilamentfornonhomologousendjoining |