Cargando…

Insights into Degron Recognition by APC/C Coactivators from the Structure of an Acm1-Cdh1 Complex

The anaphase-promoting complex/cyclosome (APC/C) regulates sister chromatid segregation and the exit from mitosis. Selection of most APC/C substrates is controlled by coactivator subunits (either Cdc20 or Cdh1) that interact with substrate destruction motifs—predominantly the destruction (D) box and...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Jun, Chao, William C.H., Zhang, Ziguo, Yang, Jing, Cronin, Nora, Barford, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690534/
https://www.ncbi.nlm.nih.gov/pubmed/23707760
http://dx.doi.org/10.1016/j.molcel.2013.04.024
Descripción
Sumario:The anaphase-promoting complex/cyclosome (APC/C) regulates sister chromatid segregation and the exit from mitosis. Selection of most APC/C substrates is controlled by coactivator subunits (either Cdc20 or Cdh1) that interact with substrate destruction motifs—predominantly the destruction (D) box and KEN box degrons. How coactivators recognize D box degrons and how this is inhibited by APC/C regulatory proteins is not defined at the atomic level. Here, from the crystal structure of S. cerevisiae Cdh1 in complex with its specific inhibitor Acm1, which incorporates D and KEN box pseudosubstrate motifs, we describe the molecular basis for D box recognition. Additional interactions between Acm1 and Cdh1 identify a third protein-binding site on Cdh1 that is likely to confer coactivator-specific protein functions including substrate association. We provide a structural rationalization for D box and KEN box recognition by coactivators and demonstrate that many noncanonical APC/C degrons bind APC/C coactivators at the D box coreceptor.