Cargando…
Germline Mutations in Mtap Cooperate with Myc to Accelerate Tumorigenesis in Mice
OBJECTIVE: The gene encoding the methionine salvage pathway methylthioadenosine phosphorylase (MTAP) is a tumor suppressor gene that is frequently inactivated in a wide variety of human cancers. In this study, we have examined if heterozygosity for a null mutation in Mtap (Mtap(lacZ)) could accelera...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694069/ https://www.ncbi.nlm.nih.gov/pubmed/23840755 http://dx.doi.org/10.1371/journal.pone.0067635 |
Sumario: | OBJECTIVE: The gene encoding the methionine salvage pathway methylthioadenosine phosphorylase (MTAP) is a tumor suppressor gene that is frequently inactivated in a wide variety of human cancers. In this study, we have examined if heterozygosity for a null mutation in Mtap (Mtap(lacZ)) could accelerate tumorigenesis development in two different mouse cancer models, Eμ-myc transgenic and Pten(+/−). METHODS: Mtap Eμ-myc and Mtap Pten mice were generated and tumor-free survival was monitored over time. Tumors were also examined for a variety of histological and protein markers. In addition, microarray analysis was performed on the livers of Mtap(lacZ/+) and Mtap(+/+) mice. RESULTS: Survival in both models was significantly decreased in Mtap(lacZ/+) compared to Mtap(+/+) mice. In Eµ-myc mice, Mtap mutations accelerated the formation of lymphomas from cells in the early pre-B stage, and these tumors tended to be of higher grade and have higher expression levels of ornithine decarboxylase compared to those observed in control Eµ-myc Mtap(+/+) mice. Surprisingly, examination of Mtap status in lymphomas in Eµ-myc Mtap(lacZ/+) and Eµ-myc Mtap(+/+) animals did not reveal significant differences in the frequency of loss of Mtap protein expression, despite having shorter latency times, suggesting that haploinsufficiency of Mtap may be playing a direct role in accelerating tumorigenesis. Consistent with this idea, microarray analysis on liver tissue from age and sex matched Mtap(+/+) and Mtap(lacZ/+) animals found 363 transcripts whose expression changed at least 1.5-fold (P<0.01). Functional categorization of these genes reveals enrichments in several pathways involved in growth control and cancer. CONCLUSION: Our findings show that germline inactivation of a single Mtap allele alters gene expression and enhances lymphomagenesis in Eµ-myc mice. |
---|