Cargando…
Stochastic Tunneling of Two Mutations in a Population of Cancer Cells
Cancer initiation, progression, and the emergence of drug resistance are driven by specific genetic and/or epigenetic alterations such as point mutations, structural alterations, DNA methylation and histone modification changes. These alterations may confer advantageous, deleterious or neutral effec...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694076/ https://www.ncbi.nlm.nih.gov/pubmed/23840359 http://dx.doi.org/10.1371/journal.pone.0065724 |
_version_ | 1782274804464746496 |
---|---|
author | Haeno, Hiroshi Maruvka, Yosef E. Iwasa, Yoh Michor, Franziska |
author_facet | Haeno, Hiroshi Maruvka, Yosef E. Iwasa, Yoh Michor, Franziska |
author_sort | Haeno, Hiroshi |
collection | PubMed |
description | Cancer initiation, progression, and the emergence of drug resistance are driven by specific genetic and/or epigenetic alterations such as point mutations, structural alterations, DNA methylation and histone modification changes. These alterations may confer advantageous, deleterious or neutral effects to mutated cells. Previous studies showed that cells harboring two particular alterations may arise in a fixed-size population even in the absence of an intermediate state in which cells harboring only the first alteration take over the population; this phenomenon is called stochastic tunneling. Here, we investigated a stochastic Moran model in which two alterations emerge in a cell population of fixed size. We developed a novel approach to comprehensively describe the evolutionary dynamics of stochastic tunneling of two mutations. We considered the scenarios of large mutation rates and various fitness values and validated the accuracy of the mathematical predictions with exact stochastic computer simulations. Our theory is applicable to situations in which two alterations are accumulated in a fixed-size population of binary dividing cells. |
format | Online Article Text |
id | pubmed-3694076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36940762013-07-09 Stochastic Tunneling of Two Mutations in a Population of Cancer Cells Haeno, Hiroshi Maruvka, Yosef E. Iwasa, Yoh Michor, Franziska PLoS One Research Article Cancer initiation, progression, and the emergence of drug resistance are driven by specific genetic and/or epigenetic alterations such as point mutations, structural alterations, DNA methylation and histone modification changes. These alterations may confer advantageous, deleterious or neutral effects to mutated cells. Previous studies showed that cells harboring two particular alterations may arise in a fixed-size population even in the absence of an intermediate state in which cells harboring only the first alteration take over the population; this phenomenon is called stochastic tunneling. Here, we investigated a stochastic Moran model in which two alterations emerge in a cell population of fixed size. We developed a novel approach to comprehensively describe the evolutionary dynamics of stochastic tunneling of two mutations. We considered the scenarios of large mutation rates and various fitness values and validated the accuracy of the mathematical predictions with exact stochastic computer simulations. Our theory is applicable to situations in which two alterations are accumulated in a fixed-size population of binary dividing cells. Public Library of Science 2013-06-26 /pmc/articles/PMC3694076/ /pubmed/23840359 http://dx.doi.org/10.1371/journal.pone.0065724 Text en © 2013 Haeno et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Haeno, Hiroshi Maruvka, Yosef E. Iwasa, Yoh Michor, Franziska Stochastic Tunneling of Two Mutations in a Population of Cancer Cells |
title | Stochastic Tunneling of Two Mutations in a Population of Cancer Cells |
title_full | Stochastic Tunneling of Two Mutations in a Population of Cancer Cells |
title_fullStr | Stochastic Tunneling of Two Mutations in a Population of Cancer Cells |
title_full_unstemmed | Stochastic Tunneling of Two Mutations in a Population of Cancer Cells |
title_short | Stochastic Tunneling of Two Mutations in a Population of Cancer Cells |
title_sort | stochastic tunneling of two mutations in a population of cancer cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694076/ https://www.ncbi.nlm.nih.gov/pubmed/23840359 http://dx.doi.org/10.1371/journal.pone.0065724 |
work_keys_str_mv | AT haenohiroshi stochastictunnelingoftwomutationsinapopulationofcancercells AT maruvkayosefe stochastictunnelingoftwomutationsinapopulationofcancercells AT iwasayoh stochastictunnelingoftwomutationsinapopulationofcancercells AT michorfranziska stochastictunnelingoftwomutationsinapopulationofcancercells |