Cargando…
The admixture maximum likelihood test to test for association between rare variants and disease phenotypes
BACKGROUND: The development of genotyping arrays containing hundreds of thousands of rare variants across the genome and advances in high-throughput sequencing technologies have made feasible empirical genetic association studies to search for rare disease susceptibility alleles. As single variant t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698090/ https://www.ncbi.nlm.nih.gov/pubmed/23738568 http://dx.doi.org/10.1186/1471-2105-14-177 |
_version_ | 1782275238651756544 |
---|---|
author | Tyrer, Jonathan P Guo, Qi Easton, Douglas F Pharoah, Paul DP |
author_facet | Tyrer, Jonathan P Guo, Qi Easton, Douglas F Pharoah, Paul DP |
author_sort | Tyrer, Jonathan P |
collection | PubMed |
description | BACKGROUND: The development of genotyping arrays containing hundreds of thousands of rare variants across the genome and advances in high-throughput sequencing technologies have made feasible empirical genetic association studies to search for rare disease susceptibility alleles. As single variant testing is underpowered to detect associations, the development of statistical methods to combine analysis across variants – so-called “burden tests” - is an area of active research interest. We previously developed a method, the admixture maximum likelihood test, to test multiple, common variants for association with a trait of interest. We have extended this method, called the rare admixture maximum likelihood test (RAML), for the analysis of rare variants. In this paper we compare the performance of RAML with six other burden tests designed to test for association of rare variants. RESULTS: We used simulation testing over a range of scenarios to test the power of RAML compared to the other rare variant association testing methods. These scenarios modelled differences in effect variability, the average direction of effect and the proportion of associated variants. We evaluated the power for all the different scenarios. RAML tended to have the greatest power for most scenarios where the proportion of associated variants was small, whereas SKAT-O performed a little better for the scenarios with a higher proportion of associated variants. CONCLUSIONS: The RAML method makes no assumptions about the proportion of variants that are associated with the phenotype of interest or the magnitude and direction of their effect. The method is flexible and can be applied to both dichotomous and quantitative traits and allows for the inclusion of covariates in the underlying regression model. The RAML method performed well compared to the other methods over a wide range of scenarios. Generally power was moderate in most of the scenarios, underlying the need for large sample sizes in any form of association testing. |
format | Online Article Text |
id | pubmed-3698090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36980902013-07-02 The admixture maximum likelihood test to test for association between rare variants and disease phenotypes Tyrer, Jonathan P Guo, Qi Easton, Douglas F Pharoah, Paul DP BMC Bioinformatics Methodology Article BACKGROUND: The development of genotyping arrays containing hundreds of thousands of rare variants across the genome and advances in high-throughput sequencing technologies have made feasible empirical genetic association studies to search for rare disease susceptibility alleles. As single variant testing is underpowered to detect associations, the development of statistical methods to combine analysis across variants – so-called “burden tests” - is an area of active research interest. We previously developed a method, the admixture maximum likelihood test, to test multiple, common variants for association with a trait of interest. We have extended this method, called the rare admixture maximum likelihood test (RAML), for the analysis of rare variants. In this paper we compare the performance of RAML with six other burden tests designed to test for association of rare variants. RESULTS: We used simulation testing over a range of scenarios to test the power of RAML compared to the other rare variant association testing methods. These scenarios modelled differences in effect variability, the average direction of effect and the proportion of associated variants. We evaluated the power for all the different scenarios. RAML tended to have the greatest power for most scenarios where the proportion of associated variants was small, whereas SKAT-O performed a little better for the scenarios with a higher proportion of associated variants. CONCLUSIONS: The RAML method makes no assumptions about the proportion of variants that are associated with the phenotype of interest or the magnitude and direction of their effect. The method is flexible and can be applied to both dichotomous and quantitative traits and allows for the inclusion of covariates in the underlying regression model. The RAML method performed well compared to the other methods over a wide range of scenarios. Generally power was moderate in most of the scenarios, underlying the need for large sample sizes in any form of association testing. BioMed Central 2013-06-06 /pmc/articles/PMC3698090/ /pubmed/23738568 http://dx.doi.org/10.1186/1471-2105-14-177 Text en Copyright © 2013 Tyrer et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Tyrer, Jonathan P Guo, Qi Easton, Douglas F Pharoah, Paul DP The admixture maximum likelihood test to test for association between rare variants and disease phenotypes |
title | The admixture maximum likelihood test to test for association between rare variants and disease phenotypes |
title_full | The admixture maximum likelihood test to test for association between rare variants and disease phenotypes |
title_fullStr | The admixture maximum likelihood test to test for association between rare variants and disease phenotypes |
title_full_unstemmed | The admixture maximum likelihood test to test for association between rare variants and disease phenotypes |
title_short | The admixture maximum likelihood test to test for association between rare variants and disease phenotypes |
title_sort | admixture maximum likelihood test to test for association between rare variants and disease phenotypes |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698090/ https://www.ncbi.nlm.nih.gov/pubmed/23738568 http://dx.doi.org/10.1186/1471-2105-14-177 |
work_keys_str_mv | AT tyrerjonathanp theadmixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes AT guoqi theadmixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes AT eastondouglasf theadmixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes AT pharoahpauldp theadmixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes AT tyrerjonathanp admixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes AT guoqi admixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes AT eastondouglasf admixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes AT pharoahpauldp admixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes |