Cargando…

The admixture maximum likelihood test to test for association between rare variants and disease phenotypes

BACKGROUND: The development of genotyping arrays containing hundreds of thousands of rare variants across the genome and advances in high-throughput sequencing technologies have made feasible empirical genetic association studies to search for rare disease susceptibility alleles. As single variant t...

Descripción completa

Detalles Bibliográficos
Autores principales: Tyrer, Jonathan P, Guo, Qi, Easton, Douglas F, Pharoah, Paul DP
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698090/
https://www.ncbi.nlm.nih.gov/pubmed/23738568
http://dx.doi.org/10.1186/1471-2105-14-177
_version_ 1782275238651756544
author Tyrer, Jonathan P
Guo, Qi
Easton, Douglas F
Pharoah, Paul DP
author_facet Tyrer, Jonathan P
Guo, Qi
Easton, Douglas F
Pharoah, Paul DP
author_sort Tyrer, Jonathan P
collection PubMed
description BACKGROUND: The development of genotyping arrays containing hundreds of thousands of rare variants across the genome and advances in high-throughput sequencing technologies have made feasible empirical genetic association studies to search for rare disease susceptibility alleles. As single variant testing is underpowered to detect associations, the development of statistical methods to combine analysis across variants – so-called “burden tests” - is an area of active research interest. We previously developed a method, the admixture maximum likelihood test, to test multiple, common variants for association with a trait of interest. We have extended this method, called the rare admixture maximum likelihood test (RAML), for the analysis of rare variants. In this paper we compare the performance of RAML with six other burden tests designed to test for association of rare variants. RESULTS: We used simulation testing over a range of scenarios to test the power of RAML compared to the other rare variant association testing methods. These scenarios modelled differences in effect variability, the average direction of effect and the proportion of associated variants. We evaluated the power for all the different scenarios. RAML tended to have the greatest power for most scenarios where the proportion of associated variants was small, whereas SKAT-O performed a little better for the scenarios with a higher proportion of associated variants. CONCLUSIONS: The RAML method makes no assumptions about the proportion of variants that are associated with the phenotype of interest or the magnitude and direction of their effect. The method is flexible and can be applied to both dichotomous and quantitative traits and allows for the inclusion of covariates in the underlying regression model. The RAML method performed well compared to the other methods over a wide range of scenarios. Generally power was moderate in most of the scenarios, underlying the need for large sample sizes in any form of association testing.
format Online
Article
Text
id pubmed-3698090
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-36980902013-07-02 The admixture maximum likelihood test to test for association between rare variants and disease phenotypes Tyrer, Jonathan P Guo, Qi Easton, Douglas F Pharoah, Paul DP BMC Bioinformatics Methodology Article BACKGROUND: The development of genotyping arrays containing hundreds of thousands of rare variants across the genome and advances in high-throughput sequencing technologies have made feasible empirical genetic association studies to search for rare disease susceptibility alleles. As single variant testing is underpowered to detect associations, the development of statistical methods to combine analysis across variants – so-called “burden tests” - is an area of active research interest. We previously developed a method, the admixture maximum likelihood test, to test multiple, common variants for association with a trait of interest. We have extended this method, called the rare admixture maximum likelihood test (RAML), for the analysis of rare variants. In this paper we compare the performance of RAML with six other burden tests designed to test for association of rare variants. RESULTS: We used simulation testing over a range of scenarios to test the power of RAML compared to the other rare variant association testing methods. These scenarios modelled differences in effect variability, the average direction of effect and the proportion of associated variants. We evaluated the power for all the different scenarios. RAML tended to have the greatest power for most scenarios where the proportion of associated variants was small, whereas SKAT-O performed a little better for the scenarios with a higher proportion of associated variants. CONCLUSIONS: The RAML method makes no assumptions about the proportion of variants that are associated with the phenotype of interest or the magnitude and direction of their effect. The method is flexible and can be applied to both dichotomous and quantitative traits and allows for the inclusion of covariates in the underlying regression model. The RAML method performed well compared to the other methods over a wide range of scenarios. Generally power was moderate in most of the scenarios, underlying the need for large sample sizes in any form of association testing. BioMed Central 2013-06-06 /pmc/articles/PMC3698090/ /pubmed/23738568 http://dx.doi.org/10.1186/1471-2105-14-177 Text en Copyright © 2013 Tyrer et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology Article
Tyrer, Jonathan P
Guo, Qi
Easton, Douglas F
Pharoah, Paul DP
The admixture maximum likelihood test to test for association between rare variants and disease phenotypes
title The admixture maximum likelihood test to test for association between rare variants and disease phenotypes
title_full The admixture maximum likelihood test to test for association between rare variants and disease phenotypes
title_fullStr The admixture maximum likelihood test to test for association between rare variants and disease phenotypes
title_full_unstemmed The admixture maximum likelihood test to test for association between rare variants and disease phenotypes
title_short The admixture maximum likelihood test to test for association between rare variants and disease phenotypes
title_sort admixture maximum likelihood test to test for association between rare variants and disease phenotypes
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698090/
https://www.ncbi.nlm.nih.gov/pubmed/23738568
http://dx.doi.org/10.1186/1471-2105-14-177
work_keys_str_mv AT tyrerjonathanp theadmixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes
AT guoqi theadmixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes
AT eastondouglasf theadmixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes
AT pharoahpauldp theadmixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes
AT tyrerjonathanp admixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes
AT guoqi admixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes
AT eastondouglasf admixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes
AT pharoahpauldp admixturemaximumlikelihoodtesttotestforassociationbetweenrarevariantsanddiseasephenotypes