Cargando…
Pausing for thought: Disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis
Factors affecting transcriptional elongation have been characterized extensively in in vitro, single cell (yeast) and cell culture systems; however, data from the context of multicellular organisms has been relatively scarce. While studies in homogeneous cell populations have been highly informative...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698693/ https://www.ncbi.nlm.nih.gov/pubmed/23575664 http://dx.doi.org/10.1002/bies.201200179 |
_version_ | 1782275325374234624 |
---|---|
author | Jennings, Barbara H |
author_facet | Jennings, Barbara H |
author_sort | Jennings, Barbara H |
collection | PubMed |
description | Factors affecting transcriptional elongation have been characterized extensively in in vitro, single cell (yeast) and cell culture systems; however, data from the context of multicellular organisms has been relatively scarce. While studies in homogeneous cell populations have been highly informative about the underlying molecular mechanisms and prevalence of polymerase pausing, they do not reveal the biological impact of perturbing this regulation in an animal. The core components regulating pausing are expressed in all animal cells and are recruited to the majority of genes, however, disrupting their function often results in discrete phenotypic effects. Mutations in genes encoding key regulators of transcriptional pausing have been recovered from several genetic screens for specific phenotypes or interactions with specific factors in mice, zebrafish and flies. Analysis of these mutations has revealed that control of transcriptional pausing is critical for a diverse range of biological pathways essential for animal development and survival. |
format | Online Article Text |
id | pubmed-3698693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-36986932013-07-09 Pausing for thought: Disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis Jennings, Barbara H Bioessays Prospects & Overviews Factors affecting transcriptional elongation have been characterized extensively in in vitro, single cell (yeast) and cell culture systems; however, data from the context of multicellular organisms has been relatively scarce. While studies in homogeneous cell populations have been highly informative about the underlying molecular mechanisms and prevalence of polymerase pausing, they do not reveal the biological impact of perturbing this regulation in an animal. The core components regulating pausing are expressed in all animal cells and are recruited to the majority of genes, however, disrupting their function often results in discrete phenotypic effects. Mutations in genes encoding key regulators of transcriptional pausing have been recovered from several genetic screens for specific phenotypes or interactions with specific factors in mice, zebrafish and flies. Analysis of these mutations has revealed that control of transcriptional pausing is critical for a diverse range of biological pathways essential for animal development and survival. Blackwell Publishing Ltd 2013-06 2013-04-10 /pmc/articles/PMC3698693/ /pubmed/23575664 http://dx.doi.org/10.1002/bies.201200179 Text en © 2013 WILEY Periodicals, Inc. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Prospects & Overviews Jennings, Barbara H Pausing for thought: Disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis |
title | Pausing for thought: Disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis |
title_full | Pausing for thought: Disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis |
title_fullStr | Pausing for thought: Disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis |
title_full_unstemmed | Pausing for thought: Disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis |
title_short | Pausing for thought: Disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis |
title_sort | pausing for thought: disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis |
topic | Prospects & Overviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698693/ https://www.ncbi.nlm.nih.gov/pubmed/23575664 http://dx.doi.org/10.1002/bies.201200179 |
work_keys_str_mv | AT jenningsbarbarah pausingforthoughtdisruptingtheearlytranscriptionelongationcheckpointleadstodevelopmentaldefectsandtumourigenesis |