Cargando…

DJ-1-Dependent Regulation of Oxidative Stress in the Retinal Pigment Epithelium (RPE)

BACKGROUND: DJ-1 is found in many tissues, including the brain, where it has been extensively studied due to its association with Parkinson’s disease. DJ-1 functions as a redox-sensitive molecular chaperone and transcription regulator that robustly protects cells from oxidative stress. METHODOLOGY:...

Descripción completa

Detalles Bibliográficos
Autores principales: Shadrach, Karen G., Rayborn, Mary E., Hollyfield, Joe G., Bonilha, Vera L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699467/
https://www.ncbi.nlm.nih.gov/pubmed/23844142
http://dx.doi.org/10.1371/journal.pone.0067983
Descripción
Sumario:BACKGROUND: DJ-1 is found in many tissues, including the brain, where it has been extensively studied due to its association with Parkinson’s disease. DJ-1 functions as a redox-sensitive molecular chaperone and transcription regulator that robustly protects cells from oxidative stress. METHODOLOGY: Retinal pigment epithelial (RPE) cultures were treated with H(2)O(2) for various times followed by biochemical and immunohistological analysis. Cells were transfected with adenoviruses carrying the full-length human DJ-1 cDNA and a mutant construct, which has the cysteine residues at amino acid 46, 53 and 106 mutated to serine (C to S) prior to stress experiments. DJ-1 localization, levels of expression and reactive oxygen species (ROS) generation were also analyzed in cells expressing exogenous DJ-1 under baseline and oxidative stress conditions. The presence of DJ-1 and oxidized DJ-1 was evaluated in human RPE total lysates. The distribution of DJ-1 was assessed in AMD and non-AMD cryosectionss and in isolated human Bruch’s membrane (BM)/choroid from AMD eyes. PRINCIPAL FINDINGS: DJ-1 in RPE cells under baseline conditions, displays a diffuse cytoplasmic and nuclear staining. After oxidative challenge, more DJ-1 was associated with mitochondria. Increasing concentrations of H(2)O(2) resulted in a dose-dependent increase in DJ-1. Overexpression of DJ-1 but not the C to S mutant prior to exposure to oxidative stress led to significant decrease in the generation of ROS. DJ-1 and oxDJ-1 intensity of immunoreactivity was significantly higher in the RPE lysates from AMD eyes. More DJ-1 was localized to RPE cells from AMD donors with geographic atrophy and DJ-1 was also present in isolated human BM/choroid from AMD eyes. CONCLUSIONS/SIGNIFICANCE: DJ-1 regulates RPE responses to oxidative stress. Most importantly, increased DJ-1 expression prior to oxidative stress leads to decreased generation of ROS, which will be relevant for future studies of AMD since oxidative stress is a known factor affecting this disease.