Cargando…
Arsenic Trioxide Prevents Osteosarcoma Growth by Inhibition of GLI Transcription via DNA Damage Accumulation
The Hedgehog pathway is activated in various types of malignancies. We previously reported that inhibition of SMO or GLI prevents osteosarcoma growth in vitro and in vivo. Recently, it has been reported that arsenic trioxide (ATO) inhibits cancer growth by blocking GLI transcription. In this study,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704531/ https://www.ncbi.nlm.nih.gov/pubmed/23861973 http://dx.doi.org/10.1371/journal.pone.0069466 |
_version_ | 1782276029376626688 |
---|---|
author | Nakamura, Shunsuke Nagano, Satoshi Nagao, Hiroko Ishidou, Yasuhiro Yokouchi, Masahiro Abematsu, Masahiko Yamamoto, Takuya Komiya, Setsuro Setoguchi, Takao |
author_facet | Nakamura, Shunsuke Nagano, Satoshi Nagao, Hiroko Ishidou, Yasuhiro Yokouchi, Masahiro Abematsu, Masahiko Yamamoto, Takuya Komiya, Setsuro Setoguchi, Takao |
author_sort | Nakamura, Shunsuke |
collection | PubMed |
description | The Hedgehog pathway is activated in various types of malignancies. We previously reported that inhibition of SMO or GLI prevents osteosarcoma growth in vitro and in vivo. Recently, it has been reported that arsenic trioxide (ATO) inhibits cancer growth by blocking GLI transcription. In this study, we analyzed the function of ATO in the pathogenesis of osteosarcoma. Real-time PCR showed that ATO decreased the expression of Hedgehog target genes, including PTCH1, GLI1, and GLI2, in human osteosarcoma cell lines. WST-1 assay and colony formation assay revealed that ATO prevented osteosarcoma growth. These findings show that ATO prevents GLI transcription and osteosarcoma growth in vitro. Flow cytometric analysis showed that ATO promoted apoptotic cell death. Comet assay showed that ATO treatment increased accumulation of DNA damage. Western blot analysis showed that ATO treatment increased the expression of γH2AX, cleaved PARP, and cleaved caspase-3. In addition, ATO treatment decreased the expression of Bcl-2 and Bcl-xL. These findings suggest that ATO treatment promoted apoptotic cell death caused by accumulation of DNA damage. In contrast, Sonic Hedgehog treatment decreased the expression of γH2AX induced by cisplatin treatment. ATO re-induced the accumulation of DNA damage attenuated by Sonic Hedgehog treatment. These findings suggest that ATO inhibits the activation of Hedgehog signaling and promotes apoptotic cell death in osteosarcoma cells by accumulation of DNA damage. Finally, examination of mouse xenograft models showed that ATO administration prevented the growth of osteosarcoma in nude mice. Because ATO is an FDA-approved drug for treatment of leukemia, our findings suggest that ATO is a new therapeutic option for treatment of patients with osteosarcoma. |
format | Online Article Text |
id | pubmed-3704531 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37045312013-07-16 Arsenic Trioxide Prevents Osteosarcoma Growth by Inhibition of GLI Transcription via DNA Damage Accumulation Nakamura, Shunsuke Nagano, Satoshi Nagao, Hiroko Ishidou, Yasuhiro Yokouchi, Masahiro Abematsu, Masahiko Yamamoto, Takuya Komiya, Setsuro Setoguchi, Takao PLoS One Research Article The Hedgehog pathway is activated in various types of malignancies. We previously reported that inhibition of SMO or GLI prevents osteosarcoma growth in vitro and in vivo. Recently, it has been reported that arsenic trioxide (ATO) inhibits cancer growth by blocking GLI transcription. In this study, we analyzed the function of ATO in the pathogenesis of osteosarcoma. Real-time PCR showed that ATO decreased the expression of Hedgehog target genes, including PTCH1, GLI1, and GLI2, in human osteosarcoma cell lines. WST-1 assay and colony formation assay revealed that ATO prevented osteosarcoma growth. These findings show that ATO prevents GLI transcription and osteosarcoma growth in vitro. Flow cytometric analysis showed that ATO promoted apoptotic cell death. Comet assay showed that ATO treatment increased accumulation of DNA damage. Western blot analysis showed that ATO treatment increased the expression of γH2AX, cleaved PARP, and cleaved caspase-3. In addition, ATO treatment decreased the expression of Bcl-2 and Bcl-xL. These findings suggest that ATO treatment promoted apoptotic cell death caused by accumulation of DNA damage. In contrast, Sonic Hedgehog treatment decreased the expression of γH2AX induced by cisplatin treatment. ATO re-induced the accumulation of DNA damage attenuated by Sonic Hedgehog treatment. These findings suggest that ATO inhibits the activation of Hedgehog signaling and promotes apoptotic cell death in osteosarcoma cells by accumulation of DNA damage. Finally, examination of mouse xenograft models showed that ATO administration prevented the growth of osteosarcoma in nude mice. Because ATO is an FDA-approved drug for treatment of leukemia, our findings suggest that ATO is a new therapeutic option for treatment of patients with osteosarcoma. Public Library of Science 2013-07-08 /pmc/articles/PMC3704531/ /pubmed/23861973 http://dx.doi.org/10.1371/journal.pone.0069466 Text en © 2013 Nakamura et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Nakamura, Shunsuke Nagano, Satoshi Nagao, Hiroko Ishidou, Yasuhiro Yokouchi, Masahiro Abematsu, Masahiko Yamamoto, Takuya Komiya, Setsuro Setoguchi, Takao Arsenic Trioxide Prevents Osteosarcoma Growth by Inhibition of GLI Transcription via DNA Damage Accumulation |
title | Arsenic Trioxide Prevents Osteosarcoma Growth by Inhibition of GLI Transcription via DNA Damage Accumulation |
title_full | Arsenic Trioxide Prevents Osteosarcoma Growth by Inhibition of GLI Transcription via DNA Damage Accumulation |
title_fullStr | Arsenic Trioxide Prevents Osteosarcoma Growth by Inhibition of GLI Transcription via DNA Damage Accumulation |
title_full_unstemmed | Arsenic Trioxide Prevents Osteosarcoma Growth by Inhibition of GLI Transcription via DNA Damage Accumulation |
title_short | Arsenic Trioxide Prevents Osteosarcoma Growth by Inhibition of GLI Transcription via DNA Damage Accumulation |
title_sort | arsenic trioxide prevents osteosarcoma growth by inhibition of gli transcription via dna damage accumulation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704531/ https://www.ncbi.nlm.nih.gov/pubmed/23861973 http://dx.doi.org/10.1371/journal.pone.0069466 |
work_keys_str_mv | AT nakamurashunsuke arsenictrioxidepreventsosteosarcomagrowthbyinhibitionofglitranscriptionviadnadamageaccumulation AT naganosatoshi arsenictrioxidepreventsosteosarcomagrowthbyinhibitionofglitranscriptionviadnadamageaccumulation AT nagaohiroko arsenictrioxidepreventsosteosarcomagrowthbyinhibitionofglitranscriptionviadnadamageaccumulation AT ishidouyasuhiro arsenictrioxidepreventsosteosarcomagrowthbyinhibitionofglitranscriptionviadnadamageaccumulation AT yokouchimasahiro arsenictrioxidepreventsosteosarcomagrowthbyinhibitionofglitranscriptionviadnadamageaccumulation AT abematsumasahiko arsenictrioxidepreventsosteosarcomagrowthbyinhibitionofglitranscriptionviadnadamageaccumulation AT yamamototakuya arsenictrioxidepreventsosteosarcomagrowthbyinhibitionofglitranscriptionviadnadamageaccumulation AT komiyasetsuro arsenictrioxidepreventsosteosarcomagrowthbyinhibitionofglitranscriptionviadnadamageaccumulation AT setoguchitakao arsenictrioxidepreventsosteosarcomagrowthbyinhibitionofglitranscriptionviadnadamageaccumulation |