Cargando…

Personal genome testing in medical education: student experiences with genotyping in the classroom

BACKGROUND: Direct-to-consumer (DTC) personal genotyping services are beginning to be adopted by educational institutions as pedagogical tools for learning about human genetics. However, there is little known about student reactions to such testing. This study investigated student experiences and at...

Descripción completa

Detalles Bibliográficos
Autores principales: Vernez, Simone Lucia, Salari, Keyan, Ormond, Kelly E, Lee, Sandra Soo-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706781/
https://www.ncbi.nlm.nih.gov/pubmed/23510111
http://dx.doi.org/10.1186/gm428
Descripción
Sumario:BACKGROUND: Direct-to-consumer (DTC) personal genotyping services are beginning to be adopted by educational institutions as pedagogical tools for learning about human genetics. However, there is little known about student reactions to such testing. This study investigated student experiences and attitudes towards DTC personal genome testing. METHODS: Individual interviews were conducted with students who chose to undergo personal genotyping in the context of an elective genetics course. Ten medical and graduate students were interviewed before genotyping occurred, and at 2 weeks and 6 months after receiving their genotype results. Qualitative analysis of interview transcripts assessed the expectations and experiences of students who underwent personal genotyping, how they interpreted and applied their results; how the testing affected the quality of their learning during the course, and what were their perceived needs for support. RESULTS: Students stated that personal genotyping enhanced their engagement with the course content. Although students expressed skepticism over the clinical utility of some test results, they expressed significant enthusiasm immediately after receiving their personal genetic analysis, and were particularly interested in results such as drug response and carrier testing. However, few reported making behavioral changes or following up on specific results through a healthcare provider. Students did not report utilizing genetic counseling, despite feeling strongly that the 'general public' would need these services. In follow-up interviews, students exhibited poor recall on details of the consent and biobanking agreements, but expressed little regret over their decision to undergo genotyping. Students reported mining their raw genetic data, and conveyed a need for further consultation support in their exploration of genetic variants. CONCLUSIONS: Personal genotyping may improve students' self-reported motivation and engagement with course material. However, consultative support that is different from traditional genetic counseling will be necessary to support students. Before incorporating personal genotyping into coursework, institutions should lead multi-disciplinary discussion to anticipate issues and incorporate teaching mechanisms that engage the ethical, legal, and social implications of personal genotyping, including addressing those found in this study, to go beyond what is offered by commercial providers.