Cargando…

Genetic Selection for Context-Dependent Stochastic Phenotypes: Sp1 and TATA Mutations Increase Phenotypic Noise in HIV-1 Gene Expression

The sequence of a promoter within a genome does not uniquely determine gene expression levels and their variability; rather, promoter sequence can additionally interact with its location in the genome, or genomic context, to shape eukaryotic gene expression. Retroviruses, such as human immunodeficie...

Descripción completa

Detalles Bibliográficos
Autores principales: Miller-Jensen, Kathryn, Skupsky, Ron, Shah, Priya S., Arkin, Adam P., Schaffer, David V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708878/
https://www.ncbi.nlm.nih.gov/pubmed/23874178
http://dx.doi.org/10.1371/journal.pcbi.1003135
_version_ 1782276678665371648
author Miller-Jensen, Kathryn
Skupsky, Ron
Shah, Priya S.
Arkin, Adam P.
Schaffer, David V.
author_facet Miller-Jensen, Kathryn
Skupsky, Ron
Shah, Priya S.
Arkin, Adam P.
Schaffer, David V.
author_sort Miller-Jensen, Kathryn
collection PubMed
description The sequence of a promoter within a genome does not uniquely determine gene expression levels and their variability; rather, promoter sequence can additionally interact with its location in the genome, or genomic context, to shape eukaryotic gene expression. Retroviruses, such as human immunodeficiency virus-1 (HIV), integrate their genomes into those of their host and thereby provide a biomedically-relevant model system to quantitatively explore the relationship between promoter sequence, genomic context, and noise-driven variability on viral gene expression. Using an in vitro model of the HIV Tat-mediated positive-feedback loop, we previously demonstrated that fluctuations in viral Tat-transactivating protein levels generate integration-site-dependent, stochastically-driven phenotypes, in which infected cells randomly ‘switch’ between high and low expressing states in a manner that may be related to viral latency. Here we extended this model and designed a forward genetic screen to systematically identify genetic elements in the HIV LTR promoter that modulate the fraction of genomic integrations that specify ‘Switching’ phenotypes. Our screen identified mutations in core promoter regions, including Sp1 and TATA transcription factor binding sites, which increased the Switching fraction several fold. By integrating single-cell experiments with computational modeling, we further investigated the mechanism of Switching-fraction enhancement for a selected Sp1 mutation. Our experimental observations demonstrated that the Sp1 mutation both impaired Tat-transactivated expression and also altered basal expression in the absence of Tat. Computational analysis demonstrated that the observed change in basal expression could contribute significantly to the observed increase in viral integrations that specify a Switching phenotype, provided that the selected mutation affected Tat-mediated noise amplification differentially across genomic contexts. Our study thus demonstrates a methodology to identify and characterize promoter elements that affect the distribution of stochastic phenotypes over genomic contexts, and advances our understanding of how promoter mutations may control the frequency of latent HIV infection.
format Online
Article
Text
id pubmed-3708878
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37088782013-07-19 Genetic Selection for Context-Dependent Stochastic Phenotypes: Sp1 and TATA Mutations Increase Phenotypic Noise in HIV-1 Gene Expression Miller-Jensen, Kathryn Skupsky, Ron Shah, Priya S. Arkin, Adam P. Schaffer, David V. PLoS Comput Biol Research Article The sequence of a promoter within a genome does not uniquely determine gene expression levels and their variability; rather, promoter sequence can additionally interact with its location in the genome, or genomic context, to shape eukaryotic gene expression. Retroviruses, such as human immunodeficiency virus-1 (HIV), integrate their genomes into those of their host and thereby provide a biomedically-relevant model system to quantitatively explore the relationship between promoter sequence, genomic context, and noise-driven variability on viral gene expression. Using an in vitro model of the HIV Tat-mediated positive-feedback loop, we previously demonstrated that fluctuations in viral Tat-transactivating protein levels generate integration-site-dependent, stochastically-driven phenotypes, in which infected cells randomly ‘switch’ between high and low expressing states in a manner that may be related to viral latency. Here we extended this model and designed a forward genetic screen to systematically identify genetic elements in the HIV LTR promoter that modulate the fraction of genomic integrations that specify ‘Switching’ phenotypes. Our screen identified mutations in core promoter regions, including Sp1 and TATA transcription factor binding sites, which increased the Switching fraction several fold. By integrating single-cell experiments with computational modeling, we further investigated the mechanism of Switching-fraction enhancement for a selected Sp1 mutation. Our experimental observations demonstrated that the Sp1 mutation both impaired Tat-transactivated expression and also altered basal expression in the absence of Tat. Computational analysis demonstrated that the observed change in basal expression could contribute significantly to the observed increase in viral integrations that specify a Switching phenotype, provided that the selected mutation affected Tat-mediated noise amplification differentially across genomic contexts. Our study thus demonstrates a methodology to identify and characterize promoter elements that affect the distribution of stochastic phenotypes over genomic contexts, and advances our understanding of how promoter mutations may control the frequency of latent HIV infection. Public Library of Science 2013-07-11 /pmc/articles/PMC3708878/ /pubmed/23874178 http://dx.doi.org/10.1371/journal.pcbi.1003135 Text en © 2013 Miller-Jensen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Miller-Jensen, Kathryn
Skupsky, Ron
Shah, Priya S.
Arkin, Adam P.
Schaffer, David V.
Genetic Selection for Context-Dependent Stochastic Phenotypes: Sp1 and TATA Mutations Increase Phenotypic Noise in HIV-1 Gene Expression
title Genetic Selection for Context-Dependent Stochastic Phenotypes: Sp1 and TATA Mutations Increase Phenotypic Noise in HIV-1 Gene Expression
title_full Genetic Selection for Context-Dependent Stochastic Phenotypes: Sp1 and TATA Mutations Increase Phenotypic Noise in HIV-1 Gene Expression
title_fullStr Genetic Selection for Context-Dependent Stochastic Phenotypes: Sp1 and TATA Mutations Increase Phenotypic Noise in HIV-1 Gene Expression
title_full_unstemmed Genetic Selection for Context-Dependent Stochastic Phenotypes: Sp1 and TATA Mutations Increase Phenotypic Noise in HIV-1 Gene Expression
title_short Genetic Selection for Context-Dependent Stochastic Phenotypes: Sp1 and TATA Mutations Increase Phenotypic Noise in HIV-1 Gene Expression
title_sort genetic selection for context-dependent stochastic phenotypes: sp1 and tata mutations increase phenotypic noise in hiv-1 gene expression
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708878/
https://www.ncbi.nlm.nih.gov/pubmed/23874178
http://dx.doi.org/10.1371/journal.pcbi.1003135
work_keys_str_mv AT millerjensenkathryn geneticselectionforcontextdependentstochasticphenotypessp1andtatamutationsincreasephenotypicnoiseinhiv1geneexpression
AT skupskyron geneticselectionforcontextdependentstochasticphenotypessp1andtatamutationsincreasephenotypicnoiseinhiv1geneexpression
AT shahpriyas geneticselectionforcontextdependentstochasticphenotypessp1andtatamutationsincreasephenotypicnoiseinhiv1geneexpression
AT arkinadamp geneticselectionforcontextdependentstochasticphenotypessp1andtatamutationsincreasephenotypicnoiseinhiv1geneexpression
AT schafferdavidv geneticselectionforcontextdependentstochasticphenotypessp1andtatamutationsincreasephenotypicnoiseinhiv1geneexpression