Cargando…

Upregulation of TRIM5α gene expression after live-attenuated simian immunodeficiency virus vaccination in Mauritian cynomolgus macaques, but TRIM5α genotype has no impact on virus acquisition or vaccination outcome

Polymorphism in the TRIM5α/TRIMcyp gene, which interacts with the lentiviral capsid, has been shown to impact on simian immunodeficiency virus (SIV) replication in certain macaque species. Here, in the context of a live-attenuated SIV vaccine study conducted in Mauritian-origin cynomolgus macaques (...

Descripción completa

Detalles Bibliográficos
Autores principales: Mattiuzzo, Giada, Rose, Nicola J., Almond, Neil, Towers, Greg J., Berry, Neil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for General Microbiology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709606/
https://www.ncbi.nlm.nih.gov/pubmed/23152371
http://dx.doi.org/10.1099/vir.0.047795-0
Descripción
Sumario:Polymorphism in the TRIM5α/TRIMcyp gene, which interacts with the lentiviral capsid, has been shown to impact on simian immunodeficiency virus (SIV) replication in certain macaque species. Here, in the context of a live-attenuated SIV vaccine study conducted in Mauritian-origin cynomolgus macaques (MCM), we demonstrate upregulation of TRIM5α expression in multiple lymphoid tissues immediately following vaccination. Despite this, the restricted range of TRIM5α genotypes and lack of TRIMcyp variants had no or only limited impact on the replication kinetics in vivo of either the SIVmac viral vaccine or wild-type SIVsmE660 challenge. Additionally, there appeared to be no impact of TRIM5α genotype on the outcome of homologous or heterologous vaccination/challenge studies. The limited spectrum of TRIM5α polymorphism in MCM appears to minimize host bias to provide consistency of replication for SIVmac/SIVsm viruses in vivo, and therefore on vaccination and pathogenesis studies conducted in this species.