Cargando…

Efficiency of puromycin-based technologies mediated by release factors and a ribosome recycling factor

Two puromycin-based techniques, in vitro virus (IVV) and C-terminal labelling of proteins, were developed based on the observation that puromycin binds the C-terminus of a protein. Puromycin technology is a useful tool for the detection of proteins and analysis of protein–protein interactions (PPIs)...

Descripción completa

Detalles Bibliográficos
Autores principales: Ohashi, Hiroyuki, Ishizaka, Masamichi, Hirai, Naoya, Miyamoto-Sato, Etsuko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711395/
https://www.ncbi.nlm.nih.gov/pubmed/23824411
http://dx.doi.org/10.1093/protein/gzt031
Descripción
Sumario:Two puromycin-based techniques, in vitro virus (IVV) and C-terminal labelling of proteins, were developed based on the observation that puromycin binds the C-terminus of a protein. Puromycin technology is a useful tool for the detection of proteins and analysis of protein–protein interactions (PPIs); however, problems arise due to the existence of stop codons in the native mRNAs. Release factors (RFs) that enter the A-site of the ribosome at stop codons compete with puromycin. To overcome this issue, we have used a highly controllable reconstituted cell-free system for puromycin-based techniques, and observed efficient IVV formation and C-terminal labelling using templates possessing a stop codon. The optimal conditions of IVV formation using templates possessing a stop codon was RF (−), while that of C-terminal labelling was RF (−) and the ribosome recycling factor (RRF) (+). Thus, we have overcome the experimental limitations of conventional IVV. In addition, we discovered that RRF significantly increases the efficiency of C-terminal protein labelling, but not IVV formation.