Cargando…

Hyperglycemia Mediates a Shift From Cap-Dependent to Cap-Independent Translation Via a 4E-BP1–Dependent Mechanism

Diabetes and its associated hyperglycemia induce multiple changes in liver function, yet we know little about the role played by translational control of gene expression in mediating the responses to these conditions. Here, we evaluate the hypothesis that hyperglycemia-induced O-GlcNAcylation of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Dennis, Michael D., Shenberger, Jeffrey S., Stanley, Bruce A., Kimball, Scot R., Jefferson, Leonard S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712054/
https://www.ncbi.nlm.nih.gov/pubmed/23434932
http://dx.doi.org/10.2337/db12-1453
_version_ 1782277010713739264
author Dennis, Michael D.
Shenberger, Jeffrey S.
Stanley, Bruce A.
Kimball, Scot R.
Jefferson, Leonard S.
author_facet Dennis, Michael D.
Shenberger, Jeffrey S.
Stanley, Bruce A.
Kimball, Scot R.
Jefferson, Leonard S.
author_sort Dennis, Michael D.
collection PubMed
description Diabetes and its associated hyperglycemia induce multiple changes in liver function, yet we know little about the role played by translational control of gene expression in mediating the responses to these conditions. Here, we evaluate the hypothesis that hyperglycemia-induced O-GlcNAcylation of the translational regulatory protein 4E-BP1 alters hepatic gene expression through a process involving the selection of mRNA for translation. In both streptozotocin (STZ)-treated mice and cells in culture exposed to hyperglycemic conditions, expression of 4E-BP1 and its interaction with the mRNA cap-binding protein eIF4E were enhanced in conjunction with downregulation of cap-dependent and concomitant upregulation of cap-independent mRNA translation, as assessed by a bicistronic luciferase reporter assay. Phlorizin treatment of STZ-treated mice lowered blood glucose concentrations and reduced activity of the cap-independent reporter. Notably, the glucose-induced shift from cap-dependent to cap-independent mRNA translation did not occur in cells lacking 4E-BP1. The extensive nature of this shift in translational control of gene expression was revealed using pulsed stable isotope labeling by amino acids in cell culture to identify proteins that undergo altered rates of synthesis in response to hyperglycemia. Taken together, these data provide evidence for a novel mechanism whereby O-GlcNAcylation of 4E-BP1 mediates translational control of hepatic gene expression.
format Online
Article
Text
id pubmed-3712054
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher American Diabetes Association
record_format MEDLINE/PubMed
spelling pubmed-37120542014-07-01 Hyperglycemia Mediates a Shift From Cap-Dependent to Cap-Independent Translation Via a 4E-BP1–Dependent Mechanism Dennis, Michael D. Shenberger, Jeffrey S. Stanley, Bruce A. Kimball, Scot R. Jefferson, Leonard S. Diabetes Original Research Diabetes and its associated hyperglycemia induce multiple changes in liver function, yet we know little about the role played by translational control of gene expression in mediating the responses to these conditions. Here, we evaluate the hypothesis that hyperglycemia-induced O-GlcNAcylation of the translational regulatory protein 4E-BP1 alters hepatic gene expression through a process involving the selection of mRNA for translation. In both streptozotocin (STZ)-treated mice and cells in culture exposed to hyperglycemic conditions, expression of 4E-BP1 and its interaction with the mRNA cap-binding protein eIF4E were enhanced in conjunction with downregulation of cap-dependent and concomitant upregulation of cap-independent mRNA translation, as assessed by a bicistronic luciferase reporter assay. Phlorizin treatment of STZ-treated mice lowered blood glucose concentrations and reduced activity of the cap-independent reporter. Notably, the glucose-induced shift from cap-dependent to cap-independent mRNA translation did not occur in cells lacking 4E-BP1. The extensive nature of this shift in translational control of gene expression was revealed using pulsed stable isotope labeling by amino acids in cell culture to identify proteins that undergo altered rates of synthesis in response to hyperglycemia. Taken together, these data provide evidence for a novel mechanism whereby O-GlcNAcylation of 4E-BP1 mediates translational control of hepatic gene expression. American Diabetes Association 2013-07 2013-06-14 /pmc/articles/PMC3712054/ /pubmed/23434932 http://dx.doi.org/10.2337/db12-1453 Text en © 2013 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
spellingShingle Original Research
Dennis, Michael D.
Shenberger, Jeffrey S.
Stanley, Bruce A.
Kimball, Scot R.
Jefferson, Leonard S.
Hyperglycemia Mediates a Shift From Cap-Dependent to Cap-Independent Translation Via a 4E-BP1–Dependent Mechanism
title Hyperglycemia Mediates a Shift From Cap-Dependent to Cap-Independent Translation Via a 4E-BP1–Dependent Mechanism
title_full Hyperglycemia Mediates a Shift From Cap-Dependent to Cap-Independent Translation Via a 4E-BP1–Dependent Mechanism
title_fullStr Hyperglycemia Mediates a Shift From Cap-Dependent to Cap-Independent Translation Via a 4E-BP1–Dependent Mechanism
title_full_unstemmed Hyperglycemia Mediates a Shift From Cap-Dependent to Cap-Independent Translation Via a 4E-BP1–Dependent Mechanism
title_short Hyperglycemia Mediates a Shift From Cap-Dependent to Cap-Independent Translation Via a 4E-BP1–Dependent Mechanism
title_sort hyperglycemia mediates a shift from cap-dependent to cap-independent translation via a 4e-bp1–dependent mechanism
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712054/
https://www.ncbi.nlm.nih.gov/pubmed/23434932
http://dx.doi.org/10.2337/db12-1453
work_keys_str_mv AT dennismichaeld hyperglycemiamediatesashiftfromcapdependenttocapindependenttranslationviaa4ebp1dependentmechanism
AT shenbergerjeffreys hyperglycemiamediatesashiftfromcapdependenttocapindependenttranslationviaa4ebp1dependentmechanism
AT stanleybrucea hyperglycemiamediatesashiftfromcapdependenttocapindependenttranslationviaa4ebp1dependentmechanism
AT kimballscotr hyperglycemiamediatesashiftfromcapdependenttocapindependenttranslationviaa4ebp1dependentmechanism
AT jeffersonleonards hyperglycemiamediatesashiftfromcapdependenttocapindependenttranslationviaa4ebp1dependentmechanism