Cargando…
Expression of Tra2β in Cancer Cells as a Potential Contributory Factor to Neoplasia and Metastasis
The splicing regulator proteins SRSF1 (also known as ASF/SF2) and SRSF3 (also known as SRP20) belong to the SR family of proteins and can be upregulated in cancer. The SRSF1 gene itself is amplified in some cancer cells, and cancer-associated changes in the expression of MYC also increase SRSF1 gene...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723085/ https://www.ncbi.nlm.nih.gov/pubmed/23935626 http://dx.doi.org/10.1155/2013/843781 |
_version_ | 1782278255739404288 |
---|---|
author | Best, Andrew Dagliesh, Caroline Ehrmann, Ingrid Kheirollahi-Kouhestani, Mahsa Tyson-Capper, Alison Elliott, David J. |
author_facet | Best, Andrew Dagliesh, Caroline Ehrmann, Ingrid Kheirollahi-Kouhestani, Mahsa Tyson-Capper, Alison Elliott, David J. |
author_sort | Best, Andrew |
collection | PubMed |
description | The splicing regulator proteins SRSF1 (also known as ASF/SF2) and SRSF3 (also known as SRP20) belong to the SR family of proteins and can be upregulated in cancer. The SRSF1 gene itself is amplified in some cancer cells, and cancer-associated changes in the expression of MYC also increase SRSF1 gene expression. Increased concentrations of SRSF1 protein promote prooncogenic splicing patterns of a number of key regulators of cell growth. Here, we review the evidence that upregulation of the SR-related Tra2β protein might have a similar role in cancer cells. The TRA2B gene encoding Tra2β is amplified in particular tumours including those of the lung, ovary, cervix, stomach, head, and neck. Both TRA2B RNA and Tra2β protein levels are upregulated in breast, cervical, ovarian, and colon cancer, and Tra2β expression is associated with cancer cell survival. The TRA2B gene is a transcriptional target of the protooncogene ETS-1 which might cause higher levels of expression in some cancer cells which express this transcription factor. Known Tra2β splicing targets have important roles in cancer cells, where they affect metastasis, proliferation, and cell survival. Tra2β protein is also known to interact directly with the RBMY protein which is implicated in liver cancer. |
format | Online Article Text |
id | pubmed-3723085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-37230852013-08-09 Expression of Tra2β in Cancer Cells as a Potential Contributory Factor to Neoplasia and Metastasis Best, Andrew Dagliesh, Caroline Ehrmann, Ingrid Kheirollahi-Kouhestani, Mahsa Tyson-Capper, Alison Elliott, David J. Int J Cell Biol Review Article The splicing regulator proteins SRSF1 (also known as ASF/SF2) and SRSF3 (also known as SRP20) belong to the SR family of proteins and can be upregulated in cancer. The SRSF1 gene itself is amplified in some cancer cells, and cancer-associated changes in the expression of MYC also increase SRSF1 gene expression. Increased concentrations of SRSF1 protein promote prooncogenic splicing patterns of a number of key regulators of cell growth. Here, we review the evidence that upregulation of the SR-related Tra2β protein might have a similar role in cancer cells. The TRA2B gene encoding Tra2β is amplified in particular tumours including those of the lung, ovary, cervix, stomach, head, and neck. Both TRA2B RNA and Tra2β protein levels are upregulated in breast, cervical, ovarian, and colon cancer, and Tra2β expression is associated with cancer cell survival. The TRA2B gene is a transcriptional target of the protooncogene ETS-1 which might cause higher levels of expression in some cancer cells which express this transcription factor. Known Tra2β splicing targets have important roles in cancer cells, where they affect metastasis, proliferation, and cell survival. Tra2β protein is also known to interact directly with the RBMY protein which is implicated in liver cancer. Hindawi Publishing Corporation 2013 2013-07-08 /pmc/articles/PMC3723085/ /pubmed/23935626 http://dx.doi.org/10.1155/2013/843781 Text en Copyright © 2013 Andrew Best et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Best, Andrew Dagliesh, Caroline Ehrmann, Ingrid Kheirollahi-Kouhestani, Mahsa Tyson-Capper, Alison Elliott, David J. Expression of Tra2β in Cancer Cells as a Potential Contributory Factor to Neoplasia and Metastasis |
title | Expression of Tra2β in Cancer Cells as a Potential Contributory Factor to Neoplasia and Metastasis |
title_full | Expression of Tra2β in Cancer Cells as a Potential Contributory Factor to Neoplasia and Metastasis |
title_fullStr | Expression of Tra2β in Cancer Cells as a Potential Contributory Factor to Neoplasia and Metastasis |
title_full_unstemmed | Expression of Tra2β in Cancer Cells as a Potential Contributory Factor to Neoplasia and Metastasis |
title_short | Expression of Tra2β in Cancer Cells as a Potential Contributory Factor to Neoplasia and Metastasis |
title_sort | expression of tra2β in cancer cells as a potential contributory factor to neoplasia and metastasis |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723085/ https://www.ncbi.nlm.nih.gov/pubmed/23935626 http://dx.doi.org/10.1155/2013/843781 |
work_keys_str_mv | AT bestandrew expressionoftra2bincancercellsasapotentialcontributoryfactortoneoplasiaandmetastasis AT daglieshcaroline expressionoftra2bincancercellsasapotentialcontributoryfactortoneoplasiaandmetastasis AT ehrmanningrid expressionoftra2bincancercellsasapotentialcontributoryfactortoneoplasiaandmetastasis AT kheirollahikouhestanimahsa expressionoftra2bincancercellsasapotentialcontributoryfactortoneoplasiaandmetastasis AT tysoncapperalison expressionoftra2bincancercellsasapotentialcontributoryfactortoneoplasiaandmetastasis AT elliottdavidj expressionoftra2bincancercellsasapotentialcontributoryfactortoneoplasiaandmetastasis |