Cargando…
GluN2B in corticostriatal circuits governs choice learning and choice shifting
A choice that reliably produces a preferred outcome can be automated to liberate cognitive resources for other tasks. Should an outcome become less desirable, behavior must adapt in parallel or become perseverative. Corticostriatal systems are known to mediate choice learning and flexibility, but th...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725191/ https://www.ncbi.nlm.nih.gov/pubmed/23831965 http://dx.doi.org/10.1038/nn.3457 |
Sumario: | A choice that reliably produces a preferred outcome can be automated to liberate cognitive resources for other tasks. Should an outcome become less desirable, behavior must adapt in parallel or become perseverative. Corticostriatal systems are known to mediate choice learning and flexibility, but the molecular mechanisms subserving the instantiation of these processes are not well understood. We integrated mouse behavioral, immunocytochemical, in vivo electrophysiological, genetic, and pharmacological approaches to study choice. We found that the dorsal striatum (DS) was increasingly activated with choice learning, whereas reversal of learned choice engaged prefrontal regions. In vivo, DS neurons showed activity associated with reward anticipation and receipt that emerged with learning and relearning. Corticostriatal or striatal GluN2B gene deletion, or DS-restricted GluN2B antagonism, impaired choice learning, whereas cortical GluN2B deletion or OFC GluN2B antagonism impaired shifting. Our convergent data demonstrate how corticostriatal GluN2B circuits govern the ability to learn and shift choice behavior. |
---|