Cargando…

ß-Blocker Timolol Prevents Arrhythmogenic Ca(2+) Release and Normalizes Ca(2+) and Zn(2+) Dyshomeostasis in Hyperglycemic Rat Heart

Defective cardiac mechanical activity in diabetes results from alterations in intracellular Ca(2+) handling, in part, due to increased oxidative stress. Beta-blockers demonstrate marked beneficial effects in heart dysfunction with scavenging free radicals and/or acting as an antioxidant. The aim of...

Descripción completa

Detalles Bibliográficos
Autores principales: Tuncay, Erkan, Okatan, Esma N., Vassort, Guy, Turan, Belma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726605/
https://www.ncbi.nlm.nih.gov/pubmed/23923043
http://dx.doi.org/10.1371/journal.pone.0071014
_version_ 1782278671146418176
author Tuncay, Erkan
Okatan, Esma N.
Vassort, Guy
Turan, Belma
author_facet Tuncay, Erkan
Okatan, Esma N.
Vassort, Guy
Turan, Belma
author_sort Tuncay, Erkan
collection PubMed
description Defective cardiac mechanical activity in diabetes results from alterations in intracellular Ca(2+) handling, in part, due to increased oxidative stress. Beta-blockers demonstrate marked beneficial effects in heart dysfunction with scavenging free radicals and/or acting as an antioxidant. The aim of this study was to address how β-blocker timolol-treatment of diabetic rats exerts cardioprotection. Timolol-treatment (12-week), one-week following diabetes induction, prevented diabetes-induced depressed left ventricular basal contractile activity, prolonged cellular electrical activity, and attenuated the increase in isolated-cardiomyocyte size without hyperglycemic effect. Both in vivo and in vitro timolol-treatment of diabetic cardiomyocytes prevented the altered kinetic parameters of Ca(2+) transients and reduced Ca(2+) loading of sarcoplasmic reticulum (SR), basal intracellular free Ca(2+) and Zn(2+) ([Ca(2+)](i) and [Zn(2+)](i)), and spatio-temporal properties of the Ca(2+) sparks, significantly. Timolol also antagonized hyperphosphorylation of cardiac ryanodine receptor (RyR2), and significantly restored depleted protein levels of both RyR2 and calstabin2. Western blot analysis demonstrated that timolol-treatment also significantly normalized depressed levels of some [Ca(2+)](i)-handling regulators, such as Na(+)/Ca(2+) exchanger (NCX) and phospho-phospholamban (pPLN) to PLN ratio. Incubation of diabetic cardiomyocytes with 4-mM glutathione exerted similar beneficial effects on RyR2-macromolecular complex and basal levels of both [Ca(2+)](i) and [Zn(2+)](i), increased intracellular Zn(2+) hyperphosphorylated RyR2 in a concentration-dependent manner. Timolol also led to a balanced oxidant/antioxidant level in both heart and circulation and prevented altered cellular redox state of the heart. We thus report, for the first time, that the preventing effect of timolol, directly targeting heart, seems to be associated with a normalization of macromolecular complex of RyR2 and some Ca(2+) handling regulators, and prevention of Ca(2+) leak, and thereby normalization of both [Ca(2+)](i) and [Zn(2+)](i) homeostasis in diabetic rat heart, at least in part by controlling the cellular redox status of hyperglycemic cardiomyocytes.
format Online
Article
Text
id pubmed-3726605
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37266052013-08-06 ß-Blocker Timolol Prevents Arrhythmogenic Ca(2+) Release and Normalizes Ca(2+) and Zn(2+) Dyshomeostasis in Hyperglycemic Rat Heart Tuncay, Erkan Okatan, Esma N. Vassort, Guy Turan, Belma PLoS One Research Article Defective cardiac mechanical activity in diabetes results from alterations in intracellular Ca(2+) handling, in part, due to increased oxidative stress. Beta-blockers demonstrate marked beneficial effects in heart dysfunction with scavenging free radicals and/or acting as an antioxidant. The aim of this study was to address how β-blocker timolol-treatment of diabetic rats exerts cardioprotection. Timolol-treatment (12-week), one-week following diabetes induction, prevented diabetes-induced depressed left ventricular basal contractile activity, prolonged cellular electrical activity, and attenuated the increase in isolated-cardiomyocyte size without hyperglycemic effect. Both in vivo and in vitro timolol-treatment of diabetic cardiomyocytes prevented the altered kinetic parameters of Ca(2+) transients and reduced Ca(2+) loading of sarcoplasmic reticulum (SR), basal intracellular free Ca(2+) and Zn(2+) ([Ca(2+)](i) and [Zn(2+)](i)), and spatio-temporal properties of the Ca(2+) sparks, significantly. Timolol also antagonized hyperphosphorylation of cardiac ryanodine receptor (RyR2), and significantly restored depleted protein levels of both RyR2 and calstabin2. Western blot analysis demonstrated that timolol-treatment also significantly normalized depressed levels of some [Ca(2+)](i)-handling regulators, such as Na(+)/Ca(2+) exchanger (NCX) and phospho-phospholamban (pPLN) to PLN ratio. Incubation of diabetic cardiomyocytes with 4-mM glutathione exerted similar beneficial effects on RyR2-macromolecular complex and basal levels of both [Ca(2+)](i) and [Zn(2+)](i), increased intracellular Zn(2+) hyperphosphorylated RyR2 in a concentration-dependent manner. Timolol also led to a balanced oxidant/antioxidant level in both heart and circulation and prevented altered cellular redox state of the heart. We thus report, for the first time, that the preventing effect of timolol, directly targeting heart, seems to be associated with a normalization of macromolecular complex of RyR2 and some Ca(2+) handling regulators, and prevention of Ca(2+) leak, and thereby normalization of both [Ca(2+)](i) and [Zn(2+)](i) homeostasis in diabetic rat heart, at least in part by controlling the cellular redox status of hyperglycemic cardiomyocytes. Public Library of Science 2013-07-29 /pmc/articles/PMC3726605/ /pubmed/23923043 http://dx.doi.org/10.1371/journal.pone.0071014 Text en © 2013 Tuncay et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Tuncay, Erkan
Okatan, Esma N.
Vassort, Guy
Turan, Belma
ß-Blocker Timolol Prevents Arrhythmogenic Ca(2+) Release and Normalizes Ca(2+) and Zn(2+) Dyshomeostasis in Hyperglycemic Rat Heart
title ß-Blocker Timolol Prevents Arrhythmogenic Ca(2+) Release and Normalizes Ca(2+) and Zn(2+) Dyshomeostasis in Hyperglycemic Rat Heart
title_full ß-Blocker Timolol Prevents Arrhythmogenic Ca(2+) Release and Normalizes Ca(2+) and Zn(2+) Dyshomeostasis in Hyperglycemic Rat Heart
title_fullStr ß-Blocker Timolol Prevents Arrhythmogenic Ca(2+) Release and Normalizes Ca(2+) and Zn(2+) Dyshomeostasis in Hyperglycemic Rat Heart
title_full_unstemmed ß-Blocker Timolol Prevents Arrhythmogenic Ca(2+) Release and Normalizes Ca(2+) and Zn(2+) Dyshomeostasis in Hyperglycemic Rat Heart
title_short ß-Blocker Timolol Prevents Arrhythmogenic Ca(2+) Release and Normalizes Ca(2+) and Zn(2+) Dyshomeostasis in Hyperglycemic Rat Heart
title_sort ß-blocker timolol prevents arrhythmogenic ca(2+) release and normalizes ca(2+) and zn(2+) dyshomeostasis in hyperglycemic rat heart
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726605/
https://www.ncbi.nlm.nih.gov/pubmed/23923043
http://dx.doi.org/10.1371/journal.pone.0071014
work_keys_str_mv AT tuncayerkan ßblockertimololpreventsarrhythmogenicca2releaseandnormalizesca2andzn2dyshomeostasisinhyperglycemicratheart
AT okatanesman ßblockertimololpreventsarrhythmogenicca2releaseandnormalizesca2andzn2dyshomeostasisinhyperglycemicratheart
AT vassortguy ßblockertimololpreventsarrhythmogenicca2releaseandnormalizesca2andzn2dyshomeostasisinhyperglycemicratheart
AT turanbelma ßblockertimololpreventsarrhythmogenicca2releaseandnormalizesca2andzn2dyshomeostasisinhyperglycemicratheart