Cargando…
Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway
BACKGROUND: Constitutive activation of STAT3 is one of the major oncogenic pathways involved in the development of various types of malignancies including colorectal cancer (CRC); and thus becomes a promising therapeutic target. Spica Prunellae has long been used as an important component in many tr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729539/ https://www.ncbi.nlm.nih.gov/pubmed/23800091 http://dx.doi.org/10.1186/1472-6882-13-144 |
_version_ | 1782278973908058112 |
---|---|
author | Lin, Wei Zheng, Liangpu Zhuang, Qunchuan Zhao, Jinyan Cao, Zhiyun Zeng, Jianwei Lin, Shan Xu, Wei Peng, Jun |
author_facet | Lin, Wei Zheng, Liangpu Zhuang, Qunchuan Zhao, Jinyan Cao, Zhiyun Zeng, Jianwei Lin, Shan Xu, Wei Peng, Jun |
author_sort | Lin, Wei |
collection | PubMed |
description | BACKGROUND: Constitutive activation of STAT3 is one of the major oncogenic pathways involved in the development of various types of malignancies including colorectal cancer (CRC); and thus becomes a promising therapeutic target. Spica Prunellae has long been used as an important component in many traditional Chinese medicine formulas to clinically treat CRC. Previously, we found that Spica Prunellae inhibits CRC cell growth through mitochondrion-mediated apoptosis. Furthermore, we demonstrated its anti-angiogenic activities in vivo and in vitro. To further elucidate the precise mechanism of the potential tumoricidal activity of Spica Prunellae, using a CRC mouse xenograft model, in this study we evaluated its therapeutic efficacy against CRC and investigated the underlying molecular mechanisms. METHODS: CRC mouse xenograft model was generated by subcutaneous injection of human colon carcinoma HT-29 cells into nude mice. Animals were given intra-gastric administration with 6 g/kg of the ethanol extract of Spica Prunellae (EESP) daily, 5 days a week for 16 days. Body weight and tumor growth were measured every two days. Tumor growth in vivo was determined by measuring the tumor volume and weight. HT-29 cell viability was examined by MTT assay. Cell apoptosis and proliferation in tumors from CRC xenograft mice was evaluated via immunohistochemical staining (IHS) for TUNEL and PCNA, and the intratumoral microvessel density (MVD) was examined by using IHS for the endothelial cell-specific marker CD31. The activation of STAT3 was evaluated by determining its phosphorylation level using IHS. The mRNA and protein expression of Bcl-2, Bax, Cyclin D1, VEGF-A and VEGFR2 was measured by RT-PCR and IHS, respectively. RESULTS: EESP treatment reduced tumor volume and tumor weight but had no effect on body weight change in CRC mice; decreased HT-29 cell viability in a dose-dependent manner, suggesting that EESP displays therapeutic efficacy against colon cancer growth in vivo and in vitro, without apparent toxicity. In addition, EESP significantly inhibited the phosphorylation of STAT3 in tumor tissues, indicating its suppressive action on the activation of STAT3 signaling. Consequently, the inhibitory effect of EESP on STAT3 activation resulted in an increase in the pro-apoptotic Bax/Bcl-2 ratio, decrease in the expression of the pro-proliferative Cyclin D1 and CDK4, as well as down-regulation of pro-angiogenic VEGF-A and VEGFR-2 expression. Finally, these molecular effects led to the induction of apoptosis, the inhibition of cell proliferation and tumor angiogenesis. CONCLUSIONS: Spica Prunellae possesses a broad range of anti-cancer activities due to its ability to affect STAT3 pathway, suggesting that Spica Prunellae could be a novel potent therapeutic agent for the treatment of CRC. |
format | Online Article Text |
id | pubmed-3729539 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-37295392013-08-01 Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway Lin, Wei Zheng, Liangpu Zhuang, Qunchuan Zhao, Jinyan Cao, Zhiyun Zeng, Jianwei Lin, Shan Xu, Wei Peng, Jun BMC Complement Altern Med Research Article BACKGROUND: Constitutive activation of STAT3 is one of the major oncogenic pathways involved in the development of various types of malignancies including colorectal cancer (CRC); and thus becomes a promising therapeutic target. Spica Prunellae has long been used as an important component in many traditional Chinese medicine formulas to clinically treat CRC. Previously, we found that Spica Prunellae inhibits CRC cell growth through mitochondrion-mediated apoptosis. Furthermore, we demonstrated its anti-angiogenic activities in vivo and in vitro. To further elucidate the precise mechanism of the potential tumoricidal activity of Spica Prunellae, using a CRC mouse xenograft model, in this study we evaluated its therapeutic efficacy against CRC and investigated the underlying molecular mechanisms. METHODS: CRC mouse xenograft model was generated by subcutaneous injection of human colon carcinoma HT-29 cells into nude mice. Animals were given intra-gastric administration with 6 g/kg of the ethanol extract of Spica Prunellae (EESP) daily, 5 days a week for 16 days. Body weight and tumor growth were measured every two days. Tumor growth in vivo was determined by measuring the tumor volume and weight. HT-29 cell viability was examined by MTT assay. Cell apoptosis and proliferation in tumors from CRC xenograft mice was evaluated via immunohistochemical staining (IHS) for TUNEL and PCNA, and the intratumoral microvessel density (MVD) was examined by using IHS for the endothelial cell-specific marker CD31. The activation of STAT3 was evaluated by determining its phosphorylation level using IHS. The mRNA and protein expression of Bcl-2, Bax, Cyclin D1, VEGF-A and VEGFR2 was measured by RT-PCR and IHS, respectively. RESULTS: EESP treatment reduced tumor volume and tumor weight but had no effect on body weight change in CRC mice; decreased HT-29 cell viability in a dose-dependent manner, suggesting that EESP displays therapeutic efficacy against colon cancer growth in vivo and in vitro, without apparent toxicity. In addition, EESP significantly inhibited the phosphorylation of STAT3 in tumor tissues, indicating its suppressive action on the activation of STAT3 signaling. Consequently, the inhibitory effect of EESP on STAT3 activation resulted in an increase in the pro-apoptotic Bax/Bcl-2 ratio, decrease in the expression of the pro-proliferative Cyclin D1 and CDK4, as well as down-regulation of pro-angiogenic VEGF-A and VEGFR-2 expression. Finally, these molecular effects led to the induction of apoptosis, the inhibition of cell proliferation and tumor angiogenesis. CONCLUSIONS: Spica Prunellae possesses a broad range of anti-cancer activities due to its ability to affect STAT3 pathway, suggesting that Spica Prunellae could be a novel potent therapeutic agent for the treatment of CRC. BioMed Central 2013-06-24 /pmc/articles/PMC3729539/ /pubmed/23800091 http://dx.doi.org/10.1186/1472-6882-13-144 Text en Copyright © 2013 Lin et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lin, Wei Zheng, Liangpu Zhuang, Qunchuan Zhao, Jinyan Cao, Zhiyun Zeng, Jianwei Lin, Shan Xu, Wei Peng, Jun Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway |
title | Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway |
title_full | Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway |
title_fullStr | Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway |
title_full_unstemmed | Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway |
title_short | Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway |
title_sort | spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729539/ https://www.ncbi.nlm.nih.gov/pubmed/23800091 http://dx.doi.org/10.1186/1472-6882-13-144 |
work_keys_str_mv | AT linwei spicaprunellaepromotescancercellapoptosisinhibitscellproliferationandtumorangiogenesisinamousemodelofcolorectalcancerviasuppressionofstat3pathway AT zhengliangpu spicaprunellaepromotescancercellapoptosisinhibitscellproliferationandtumorangiogenesisinamousemodelofcolorectalcancerviasuppressionofstat3pathway AT zhuangqunchuan spicaprunellaepromotescancercellapoptosisinhibitscellproliferationandtumorangiogenesisinamousemodelofcolorectalcancerviasuppressionofstat3pathway AT zhaojinyan spicaprunellaepromotescancercellapoptosisinhibitscellproliferationandtumorangiogenesisinamousemodelofcolorectalcancerviasuppressionofstat3pathway AT caozhiyun spicaprunellaepromotescancercellapoptosisinhibitscellproliferationandtumorangiogenesisinamousemodelofcolorectalcancerviasuppressionofstat3pathway AT zengjianwei spicaprunellaepromotescancercellapoptosisinhibitscellproliferationandtumorangiogenesisinamousemodelofcolorectalcancerviasuppressionofstat3pathway AT linshan spicaprunellaepromotescancercellapoptosisinhibitscellproliferationandtumorangiogenesisinamousemodelofcolorectalcancerviasuppressionofstat3pathway AT xuwei spicaprunellaepromotescancercellapoptosisinhibitscellproliferationandtumorangiogenesisinamousemodelofcolorectalcancerviasuppressionofstat3pathway AT pengjun spicaprunellaepromotescancercellapoptosisinhibitscellproliferationandtumorangiogenesisinamousemodelofcolorectalcancerviasuppressionofstat3pathway |