Cargando…
Unusual base pairing during the decoding of a stop codon by the ribosome
During normal translation, binding of a release factor to one of the three stop codons (UGA, UAA or UAG) results in termination of protein synthesis. However, modification of the initial uridine to a pseudouridine (Ψ) allows efficient recognition and read-through of these stop codons by a transfer R...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732562/ https://www.ncbi.nlm.nih.gov/pubmed/23812587 http://dx.doi.org/10.1038/nature12302 |
Sumario: | During normal translation, binding of a release factor to one of the three stop codons (UGA, UAA or UAG) results in termination of protein synthesis. However, modification of the initial uridine to a pseudouridine (Ψ) allows efficient recognition and read-through of these stop codons by a transfer RNA (tRNA), although it requires formation of two normally forbidden purine-purine base pairs(1). We have determined the crystal structure at 3.1 Å resolution of the 30S ribosomal subunit in complex with the anticodon stem loop of tRNA(Ser) bound to the ΨAG stop codon in the A site. The ΨA base pair at the first position is accompanied by the formation of purine-purine base pairs at the second and third positions of the codon, which display an unusual Watson-Crick/Hoogsteen geometry. The structure shows a previously unsuspected ability of the ribosomal decoding center to accommodate non-canonical base pairs. |
---|