Cargando…
Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing
Our ability to precisely and efficiently edit mammalian and plant genomes has been significantly improved in recent years, partially due to increasing use of designer nucleases that recognize a pre-determined DNA sequence, make a specific DNA double-strand break, and stimulate gene targeting. A pair...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736171/ https://www.ncbi.nlm.nih.gov/pubmed/23921522 http://dx.doi.org/10.1038/srep02376 |
_version_ | 1782279742625415168 |
---|---|
author | Yan, Wei Smith, Cory Cheng, Linzhao |
author_facet | Yan, Wei Smith, Cory Cheng, Linzhao |
author_sort | Yan, Wei |
collection | PubMed |
description | Our ability to precisely and efficiently edit mammalian and plant genomes has been significantly improved in recent years, partially due to increasing use of designer nucleases that recognize a pre-determined DNA sequence, make a specific DNA double-strand break, and stimulate gene targeting. A pair of zinc finger nucleases (ZFNs) or transcription activator–like effector nucleases (TALENs) that recognize two adjacent unique DNA sequences dimerize through the fused FokI nuclease domain and cut in the middle of target DNA sequences. We report here that increasing the length of recognition DNA sequences by TALENs or ZFNs does not necessarily translate to a higher efficiency or specificity. We also discover that one subunit of ZFNs and one subunit of TALENs can form a pair of hybrid nucleases with expanded specificity at two diverse targets, and stimulate gene targeting in multiple cell types including human induced pluripotent stem (iPS) cells with improved efficiency. |
format | Online Article Text |
id | pubmed-3736171 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-37361712013-08-08 Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing Yan, Wei Smith, Cory Cheng, Linzhao Sci Rep Article Our ability to precisely and efficiently edit mammalian and plant genomes has been significantly improved in recent years, partially due to increasing use of designer nucleases that recognize a pre-determined DNA sequence, make a specific DNA double-strand break, and stimulate gene targeting. A pair of zinc finger nucleases (ZFNs) or transcription activator–like effector nucleases (TALENs) that recognize two adjacent unique DNA sequences dimerize through the fused FokI nuclease domain and cut in the middle of target DNA sequences. We report here that increasing the length of recognition DNA sequences by TALENs or ZFNs does not necessarily translate to a higher efficiency or specificity. We also discover that one subunit of ZFNs and one subunit of TALENs can form a pair of hybrid nucleases with expanded specificity at two diverse targets, and stimulate gene targeting in multiple cell types including human induced pluripotent stem (iPS) cells with improved efficiency. Nature Publishing Group 2013-08-07 /pmc/articles/PMC3736171/ /pubmed/23921522 http://dx.doi.org/10.1038/srep02376 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Yan, Wei Smith, Cory Cheng, Linzhao Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing |
title | Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing |
title_full | Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing |
title_fullStr | Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing |
title_full_unstemmed | Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing |
title_short | Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing |
title_sort | expanded activity of dimer nucleases by combining zfn and talen for genome editing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736171/ https://www.ncbi.nlm.nih.gov/pubmed/23921522 http://dx.doi.org/10.1038/srep02376 |
work_keys_str_mv | AT yanwei expandedactivityofdimernucleasesbycombiningzfnandtalenforgenomeediting AT smithcory expandedactivityofdimernucleasesbycombiningzfnandtalenforgenomeediting AT chenglinzhao expandedactivityofdimernucleasesbycombiningzfnandtalenforgenomeediting |