Cargando…

Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all c...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dong, Dasari, Surendra, Chambers, Matthew C., Holman, Jerry D., Chen, Kan, Liebler, Daniel C., Orton, Daniel J., Purvine, Samuel O., Monroe, Matthew E., Chung, Chang Y., Rose, Kristie L., Tabb, David L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737598/
https://www.ncbi.nlm.nih.gov/pubmed/23499924
http://dx.doi.org/10.1016/j.gpb.2012.11.004
_version_ 1782279882476093440
author Wang, Dong
Dasari, Surendra
Chambers, Matthew C.
Holman, Jerry D.
Chen, Kan
Liebler, Daniel C.
Orton, Daniel J.
Purvine, Samuel O.
Monroe, Matthew E.
Chung, Chang Y.
Rose, Kristie L.
Tabb, David L.
author_facet Wang, Dong
Dasari, Surendra
Chambers, Matthew C.
Holman, Jerry D.
Chen, Kan
Liebler, Daniel C.
Orton, Daniel J.
Purvine, Samuel O.
Monroe, Matthew E.
Chung, Chang Y.
Rose, Kristie L.
Tabb, David L.
author_sort Wang, Dong
collection PubMed
description In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.
format Online
Article
Text
id pubmed-3737598
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-37375982014-04-01 Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates Wang, Dong Dasari, Surendra Chambers, Matthew C. Holman, Jerry D. Chen, Kan Liebler, Daniel C. Orton, Daniel J. Purvine, Samuel O. Monroe, Matthew E. Chung, Chang Y. Rose, Kristie L. Tabb, David L. Genomics Proteomics Bioinformatics Original Research In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification. Elsevier 2013-04 2013-03-07 /pmc/articles/PMC3737598/ /pubmed/23499924 http://dx.doi.org/10.1016/j.gpb.2012.11.004 Text en © 2013 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
spellingShingle Original Research
Wang, Dong
Dasari, Surendra
Chambers, Matthew C.
Holman, Jerry D.
Chen, Kan
Liebler, Daniel C.
Orton, Daniel J.
Purvine, Samuel O.
Monroe, Matthew E.
Chung, Chang Y.
Rose, Kristie L.
Tabb, David L.
Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates
title Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates
title_full Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates
title_fullStr Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates
title_full_unstemmed Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates
title_short Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates
title_sort basophile: accurate fragment charge state prediction improves peptide identification rates
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737598/
https://www.ncbi.nlm.nih.gov/pubmed/23499924
http://dx.doi.org/10.1016/j.gpb.2012.11.004
work_keys_str_mv AT wangdong basophileaccuratefragmentchargestatepredictionimprovespeptideidentificationrates
AT dasarisurendra basophileaccuratefragmentchargestatepredictionimprovespeptideidentificationrates
AT chambersmatthewc basophileaccuratefragmentchargestatepredictionimprovespeptideidentificationrates
AT holmanjerryd basophileaccuratefragmentchargestatepredictionimprovespeptideidentificationrates
AT chenkan basophileaccuratefragmentchargestatepredictionimprovespeptideidentificationrates
AT lieblerdanielc basophileaccuratefragmentchargestatepredictionimprovespeptideidentificationrates
AT ortondanielj basophileaccuratefragmentchargestatepredictionimprovespeptideidentificationrates
AT purvinesamuelo basophileaccuratefragmentchargestatepredictionimprovespeptideidentificationrates
AT monroematthewe basophileaccuratefragmentchargestatepredictionimprovespeptideidentificationrates
AT chungchangy basophileaccuratefragmentchargestatepredictionimprovespeptideidentificationrates
AT rosekristiel basophileaccuratefragmentchargestatepredictionimprovespeptideidentificationrates
AT tabbdavidl basophileaccuratefragmentchargestatepredictionimprovespeptideidentificationrates