Cargando…

Epithelial V-Like Antigen Mediates Efficacy of Anti-Alpha(4) Integrin Treatment in a Mouse Model of Multiple Sclerosis

Natalizumab inhibits the transmigration of activated T lymphocytes into the brain and is highly efficacious in multiple sclerosis (MS). However, from a pharmacogenomic perspective, its efficacy and safety in specific patients remain unclear. Here our goal was to analyze the effects of epithelial V-l...

Descripción completa

Detalles Bibliográficos
Autores principales: Wright, Erik, Rahgozar, Kusha, Hallworth, Nicholas, Lanker, Stefan, Carrithers, Michael D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738635/
https://www.ncbi.nlm.nih.gov/pubmed/23951051
http://dx.doi.org/10.1371/journal.pone.0070954
_version_ 1782476871814873088
author Wright, Erik
Rahgozar, Kusha
Hallworth, Nicholas
Lanker, Stefan
Carrithers, Michael D.
author_facet Wright, Erik
Rahgozar, Kusha
Hallworth, Nicholas
Lanker, Stefan
Carrithers, Michael D.
author_sort Wright, Erik
collection PubMed
description Natalizumab inhibits the transmigration of activated T lymphocytes into the brain and is highly efficacious in multiple sclerosis (MS). However, from a pharmacogenomic perspective, its efficacy and safety in specific patients remain unclear. Here our goal was to analyze the effects of epithelial V-like antigen (EVA) on anti-alpha(4) integrin (VLA4) efficacy in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). EVA has been previously characterized in human CD4 T lymphocytes, mouse thymic development, and choroid plexus epithelial cells. Further analysis here demonstrated expression in B lymphocytes and an increase in EVA(+) lymphocytes following immunization. Following active induction of EAE using the MOG(35–55) active immunization model, EVA deficient mice developed more severe EAE and white matter tissue injury as compared to wild type controls. This severe EAE phenotype did not respond to anti-VLA4 treatment. In both the control antibody and anti-VLA4 conditions, these mice demonstrated persistent CNS invasion of mature B lymphocyte (CD19(+), CD21(+), sIgG(+)), increased serum autoantibody levels, and extensive complement and IgG deposition within lesions containing CD5(+)IgG(+) cells. Wild type mice treated with control antibody also demonstrated the presence of CD19(+), CD21(+), sIgG(+) cells within the CNS during peak EAE disease severity and detectable serum autoantibody. In contrast, wild type mice treated with anti-VLA4 demonstrated reduced serum autoantibody levels as compared to wild type controls and EVA-knockout mice. As expected, anti-VLA4 treatment in wild type mice reduced the total numbers of all CNS mononuclear cells and markedly decreased CD4 T lymphocyte invasion. Treatment also reduced the frequency of CD19(+), CD21(+), sIgG(+) cells in the CNS. These results suggest that anti-VLA4 treatment may reduce B lymphocyte associated autoimmunity in some individuals and that EVA expression is necessary for an optimal therapeutic response. We postulate that these findings could optimize the selection of treatment responders.
format Online
Article
Text
id pubmed-3738635
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37386352013-08-15 Epithelial V-Like Antigen Mediates Efficacy of Anti-Alpha(4) Integrin Treatment in a Mouse Model of Multiple Sclerosis Wright, Erik Rahgozar, Kusha Hallworth, Nicholas Lanker, Stefan Carrithers, Michael D. PLoS One Research Article Natalizumab inhibits the transmigration of activated T lymphocytes into the brain and is highly efficacious in multiple sclerosis (MS). However, from a pharmacogenomic perspective, its efficacy and safety in specific patients remain unclear. Here our goal was to analyze the effects of epithelial V-like antigen (EVA) on anti-alpha(4) integrin (VLA4) efficacy in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). EVA has been previously characterized in human CD4 T lymphocytes, mouse thymic development, and choroid plexus epithelial cells. Further analysis here demonstrated expression in B lymphocytes and an increase in EVA(+) lymphocytes following immunization. Following active induction of EAE using the MOG(35–55) active immunization model, EVA deficient mice developed more severe EAE and white matter tissue injury as compared to wild type controls. This severe EAE phenotype did not respond to anti-VLA4 treatment. In both the control antibody and anti-VLA4 conditions, these mice demonstrated persistent CNS invasion of mature B lymphocyte (CD19(+), CD21(+), sIgG(+)), increased serum autoantibody levels, and extensive complement and IgG deposition within lesions containing CD5(+)IgG(+) cells. Wild type mice treated with control antibody also demonstrated the presence of CD19(+), CD21(+), sIgG(+) cells within the CNS during peak EAE disease severity and detectable serum autoantibody. In contrast, wild type mice treated with anti-VLA4 demonstrated reduced serum autoantibody levels as compared to wild type controls and EVA-knockout mice. As expected, anti-VLA4 treatment in wild type mice reduced the total numbers of all CNS mononuclear cells and markedly decreased CD4 T lymphocyte invasion. Treatment also reduced the frequency of CD19(+), CD21(+), sIgG(+) cells in the CNS. These results suggest that anti-VLA4 treatment may reduce B lymphocyte associated autoimmunity in some individuals and that EVA expression is necessary for an optimal therapeutic response. We postulate that these findings could optimize the selection of treatment responders. Public Library of Science 2013-08-08 /pmc/articles/PMC3738635/ /pubmed/23951051 http://dx.doi.org/10.1371/journal.pone.0070954 Text en © 2013 Wright et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Wright, Erik
Rahgozar, Kusha
Hallworth, Nicholas
Lanker, Stefan
Carrithers, Michael D.
Epithelial V-Like Antigen Mediates Efficacy of Anti-Alpha(4) Integrin Treatment in a Mouse Model of Multiple Sclerosis
title Epithelial V-Like Antigen Mediates Efficacy of Anti-Alpha(4) Integrin Treatment in a Mouse Model of Multiple Sclerosis
title_full Epithelial V-Like Antigen Mediates Efficacy of Anti-Alpha(4) Integrin Treatment in a Mouse Model of Multiple Sclerosis
title_fullStr Epithelial V-Like Antigen Mediates Efficacy of Anti-Alpha(4) Integrin Treatment in a Mouse Model of Multiple Sclerosis
title_full_unstemmed Epithelial V-Like Antigen Mediates Efficacy of Anti-Alpha(4) Integrin Treatment in a Mouse Model of Multiple Sclerosis
title_short Epithelial V-Like Antigen Mediates Efficacy of Anti-Alpha(4) Integrin Treatment in a Mouse Model of Multiple Sclerosis
title_sort epithelial v-like antigen mediates efficacy of anti-alpha(4) integrin treatment in a mouse model of multiple sclerosis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738635/
https://www.ncbi.nlm.nih.gov/pubmed/23951051
http://dx.doi.org/10.1371/journal.pone.0070954
work_keys_str_mv AT wrighterik epithelialvlikeantigenmediatesefficacyofantialpha4integrintreatmentinamousemodelofmultiplesclerosis
AT rahgozarkusha epithelialvlikeantigenmediatesefficacyofantialpha4integrintreatmentinamousemodelofmultiplesclerosis
AT hallworthnicholas epithelialvlikeantigenmediatesefficacyofantialpha4integrintreatmentinamousemodelofmultiplesclerosis
AT lankerstefan epithelialvlikeantigenmediatesefficacyofantialpha4integrintreatmentinamousemodelofmultiplesclerosis
AT carrithersmichaeld epithelialvlikeantigenmediatesefficacyofantialpha4integrintreatmentinamousemodelofmultiplesclerosis