Cargando…
Induction of a Feed Forward Pro-Apoptotic Mechanistic Loop by Nitric Oxide in a Human Breast Cancer Model
We have previously demonstrated that relatively high concentrations of NO [Nitric Oxide] as produced by activated macrophages induced apoptosis in the human breast cancer cell line, MDA-MB-468. More recently, we also demonstrated the importance of endogenous H(2)O(2) in the regulation of growth in h...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741195/ https://www.ncbi.nlm.nih.gov/pubmed/23950968 http://dx.doi.org/10.1371/journal.pone.0070593 |
Sumario: | We have previously demonstrated that relatively high concentrations of NO [Nitric Oxide] as produced by activated macrophages induced apoptosis in the human breast cancer cell line, MDA-MB-468. More recently, we also demonstrated the importance of endogenous H(2)O(2) in the regulation of growth in human breast cancer cells. In the present study we assessed the interplay between exogenously administered NO and the endogenously produced reactive oxygen species [ROS] in human breast cancer cells and evaluated the mechanism[s] in the induction of apoptosis. To this end we identified a novel mechanism by which NO down regulated endogenous hydrogen peroxide [H(2)O(2)] formation via the down-regulation of superoxide [O(2) (.−)] and the activation of catalase. We further demonstrated the existence of a feed forward mechanistic loop involving protein phosphatase 2A [PP2A] and its downstream substrate FOXO1 in the induction of apoptosis and the synthesis of catalase. We utilized gene silencing of PP2A, FOXO1 and catalase to assess their relative importance and key roles in NO mediated apoptosis. This study provides the potential for a therapeutic approach in treating breast cancer by targeted delivery of NO where NO donors and activators of downstream players could initiate a self sustaining apoptotic cascade in breast cancer cells. |
---|