Cargando…
From Principal Component to Direct Coupling Analysis of Coevolution in Proteins: Low-Eigenvalue Modes are Needed for Structure Prediction
Various approaches have explored the covariation of residues in multiple-sequence alignments of homologous proteins to extract functional and structural information. Among those are principal component analysis (PCA), which identifies the most correlated groups of residues, and direct coupling analy...
Autores principales: | Cocco, Simona, Monasson, Remi, Weigt, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749948/ https://www.ncbi.nlm.nih.gov/pubmed/23990764 http://dx.doi.org/10.1371/journal.pcbi.1003176 |
Ejemplares similares
-
Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction
por: De Leonardis, Eleonora, et al.
Publicado: (2015) -
An Eigenvalue test for spatial principal component analysis
por: Montano, V., et al.
Publicado: (2017) -
Adaptive cluster algorithm to infer Boltzmann machines from multi-electrode recording data
por: Cocco, Simona, et al.
Publicado: (2011) -
Improving sequence-based modeling of protein families using secondary-structure quality assessment
por: Malbranke, Cyril, et al.
Publicado: (2021) -
Functional coupling networks inferred from prefrontal cortex activity show experience-related effective plasticity
por: Tavoni, Gaia, et al.
Publicado: (2017)