Cargando…

Engineered Pichia pastoris for enhanced production of S-adenosylmethionine

A genetically engineered strain of Pichia pastoris expressing S-adenosylmethionine synthetase gene from Saccharomyces cerevisiae under the control of AOX 1 promoter was developed. Induction of recombinant strain with 1% methanol resulted in the expression of SAM2 protein of ~ 42 kDa, whereas control...

Descripción completa

Detalles Bibliográficos
Autores principales: Kamarthapu, Venu, Ragampeta, Srinivas, Rao, Khareedu Venkateswara, Reddy, Vudem Dashavantha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750815/
https://www.ncbi.nlm.nih.gov/pubmed/23890127
http://dx.doi.org/10.1186/2191-0855-3-40
Descripción
Sumario:A genetically engineered strain of Pichia pastoris expressing S-adenosylmethionine synthetase gene from Saccharomyces cerevisiae under the control of AOX 1 promoter was developed. Induction of recombinant strain with 1% methanol resulted in the expression of SAM2 protein of ~ 42 kDa, whereas control GS115 showed no such band. Further, the recombinant strain showed 17-fold higher enzyme activity over control. Shake flask cultivation of engineered P. pastoris in BMGY medium supplemented with 1% L-methionine yielded 28 g/L wet cell weight and 0.6 g/L S-adenosylmethionine, whereas control (transformants with vector alone) with similar wet cell weight under identical conditions accumulated 0.018 g/L. The clone cultured in the bioreactor containing enriched methionine medium showed increased WCW (117 g/L) as compared to shake flask cultures and yielded 2.4 g/L S-adenosylmethionine. In spite of expression of SAM 2 gene up to 90 h, S-adenosylmethionine accumulation tended to plateau after 72 h, presumably because of the limited ATP available in the cells at stationery phase. The recombinant P pastoris seems promising as potential source for industrial production of S-adenosylmethionine.