Cargando…

Stability properties of PrP(Sc) from cattle with experimental transmissible spongiform encephalopathies: use of a rapid whole homogenate, protease-free assay

BACKGROUND: Transmissible Spongiform Encephalopathies (TSEs), including scrapie in sheep, chronic wasting disease (CWD) in cervids, transmissible mink encephalopathy (TME), and bovine spongiform encephalopathy (BSE), are fatal diseases of the nervous system associated with accumulation of misfolded...

Descripción completa

Detalles Bibliográficos
Autores principales: Vrentas, Catherine E, Greenlee, Justin J, Baron, Thierry, Caramelli, Maria, Czub, Stefanie, Nicholson, Eric M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751458/
https://www.ncbi.nlm.nih.gov/pubmed/23945217
http://dx.doi.org/10.1186/1746-6148-9-167
_version_ 1782281601165557760
author Vrentas, Catherine E
Greenlee, Justin J
Baron, Thierry
Caramelli, Maria
Czub, Stefanie
Nicholson, Eric M
author_facet Vrentas, Catherine E
Greenlee, Justin J
Baron, Thierry
Caramelli, Maria
Czub, Stefanie
Nicholson, Eric M
author_sort Vrentas, Catherine E
collection PubMed
description BACKGROUND: Transmissible Spongiform Encephalopathies (TSEs), including scrapie in sheep, chronic wasting disease (CWD) in cervids, transmissible mink encephalopathy (TME), and bovine spongiform encephalopathy (BSE), are fatal diseases of the nervous system associated with accumulation of misfolded prion protein (PrP(Sc)). Different strains of TSEs exist, associated with different PrP(Sc) conformations that can be probed by the stability assay, in which PrP(Sc) is treated with increasing concentrations of the denaturant guanidine hydrochloride (GdnHCl). RESULTS: Here, we provide the first comprehensive application of a rapid, protease-free version of the GdnHCl stability assay to brain tissue from cattle experimentally infected with various TSE isolates. Consistent with previous findings from a single Japanese isolate, the L-type isolates of BSE are not distinguishable from classical BSE in this assay. In contrast, H-type isolates of BSE, including our unique isolate of E211K BSE, exhibit higher stability than classical BSE, suggesting that its increased protection against protease digestion at the BSE N-terminus is associated with a higher stability in GdnHCl. While the difference in stability in our version of the assay is likely not large enough for effective use in a diagnostic laboratory setting, the use of alternative experimental conditions may enhance this effect. TSEs from other natural host species that have been passaged in cattle, including CWD and TME, were not distinguishable from classical BSE, while isolates of cattle passaged scrapie exhibited a slight increase in stability as compared to classical BSE. CONCLUSIONS: These results suggest that the core of PrP(Sc), as probed in this assay, has similar stability properties among cattle-passaged TSE isolates and that the conformational differences that lead to changes in the proteinase K cleavage site do not cause large changes in the stability of PrP(Sc) from TSE-affected cattle. However, the stability differences observed here will provide a basis of comparison for new isolates of atypical BSE observed in the future and in other geographic locations, especially in the case of H-type BSE.
format Online
Article
Text
id pubmed-3751458
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-37514582013-08-24 Stability properties of PrP(Sc) from cattle with experimental transmissible spongiform encephalopathies: use of a rapid whole homogenate, protease-free assay Vrentas, Catherine E Greenlee, Justin J Baron, Thierry Caramelli, Maria Czub, Stefanie Nicholson, Eric M BMC Vet Res Research Article BACKGROUND: Transmissible Spongiform Encephalopathies (TSEs), including scrapie in sheep, chronic wasting disease (CWD) in cervids, transmissible mink encephalopathy (TME), and bovine spongiform encephalopathy (BSE), are fatal diseases of the nervous system associated with accumulation of misfolded prion protein (PrP(Sc)). Different strains of TSEs exist, associated with different PrP(Sc) conformations that can be probed by the stability assay, in which PrP(Sc) is treated with increasing concentrations of the denaturant guanidine hydrochloride (GdnHCl). RESULTS: Here, we provide the first comprehensive application of a rapid, protease-free version of the GdnHCl stability assay to brain tissue from cattle experimentally infected with various TSE isolates. Consistent with previous findings from a single Japanese isolate, the L-type isolates of BSE are not distinguishable from classical BSE in this assay. In contrast, H-type isolates of BSE, including our unique isolate of E211K BSE, exhibit higher stability than classical BSE, suggesting that its increased protection against protease digestion at the BSE N-terminus is associated with a higher stability in GdnHCl. While the difference in stability in our version of the assay is likely not large enough for effective use in a diagnostic laboratory setting, the use of alternative experimental conditions may enhance this effect. TSEs from other natural host species that have been passaged in cattle, including CWD and TME, were not distinguishable from classical BSE, while isolates of cattle passaged scrapie exhibited a slight increase in stability as compared to classical BSE. CONCLUSIONS: These results suggest that the core of PrP(Sc), as probed in this assay, has similar stability properties among cattle-passaged TSE isolates and that the conformational differences that lead to changes in the proteinase K cleavage site do not cause large changes in the stability of PrP(Sc) from TSE-affected cattle. However, the stability differences observed here will provide a basis of comparison for new isolates of atypical BSE observed in the future and in other geographic locations, especially in the case of H-type BSE. BioMed Central 2013-08-15 /pmc/articles/PMC3751458/ /pubmed/23945217 http://dx.doi.org/10.1186/1746-6148-9-167 Text en Copyright © 2013 Vrentas et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Vrentas, Catherine E
Greenlee, Justin J
Baron, Thierry
Caramelli, Maria
Czub, Stefanie
Nicholson, Eric M
Stability properties of PrP(Sc) from cattle with experimental transmissible spongiform encephalopathies: use of a rapid whole homogenate, protease-free assay
title Stability properties of PrP(Sc) from cattle with experimental transmissible spongiform encephalopathies: use of a rapid whole homogenate, protease-free assay
title_full Stability properties of PrP(Sc) from cattle with experimental transmissible spongiform encephalopathies: use of a rapid whole homogenate, protease-free assay
title_fullStr Stability properties of PrP(Sc) from cattle with experimental transmissible spongiform encephalopathies: use of a rapid whole homogenate, protease-free assay
title_full_unstemmed Stability properties of PrP(Sc) from cattle with experimental transmissible spongiform encephalopathies: use of a rapid whole homogenate, protease-free assay
title_short Stability properties of PrP(Sc) from cattle with experimental transmissible spongiform encephalopathies: use of a rapid whole homogenate, protease-free assay
title_sort stability properties of prp(sc) from cattle with experimental transmissible spongiform encephalopathies: use of a rapid whole homogenate, protease-free assay
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751458/
https://www.ncbi.nlm.nih.gov/pubmed/23945217
http://dx.doi.org/10.1186/1746-6148-9-167
work_keys_str_mv AT vrentascatherinee stabilitypropertiesofprpscfromcattlewithexperimentaltransmissiblespongiformencephalopathiesuseofarapidwholehomogenateproteasefreeassay
AT greenleejustinj stabilitypropertiesofprpscfromcattlewithexperimentaltransmissiblespongiformencephalopathiesuseofarapidwholehomogenateproteasefreeassay
AT baronthierry stabilitypropertiesofprpscfromcattlewithexperimentaltransmissiblespongiformencephalopathiesuseofarapidwholehomogenateproteasefreeassay
AT caramellimaria stabilitypropertiesofprpscfromcattlewithexperimentaltransmissiblespongiformencephalopathiesuseofarapidwholehomogenateproteasefreeassay
AT czubstefanie stabilitypropertiesofprpscfromcattlewithexperimentaltransmissiblespongiformencephalopathiesuseofarapidwholehomogenateproteasefreeassay
AT nicholsonericm stabilitypropertiesofprpscfromcattlewithexperimentaltransmissiblespongiformencephalopathiesuseofarapidwholehomogenateproteasefreeassay