Cargando…
Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells
The effects of diverse stresses on promoter selectivity and transcription regulation by the tumor suppressor p53 are poorly understood. We have taken a comprehensive approach to characterizing the human p53 network that includes p53 levels, binding, expression and chromatin changes under diverse str...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753631/ https://www.ncbi.nlm.nih.gov/pubmed/23775793 http://dx.doi.org/10.1093/nar/gkt504 |
_version_ | 1782281869401784320 |
---|---|
author | Menendez, Daniel Nguyen, Thuy-Ai Freudenberg, Johannes M. Mathew, Viju J. Anderson, Carl W. Jothi, Raja Resnick, Michael A. |
author_facet | Menendez, Daniel Nguyen, Thuy-Ai Freudenberg, Johannes M. Mathew, Viju J. Anderson, Carl W. Jothi, Raja Resnick, Michael A. |
author_sort | Menendez, Daniel |
collection | PubMed |
description | The effects of diverse stresses on promoter selectivity and transcription regulation by the tumor suppressor p53 are poorly understood. We have taken a comprehensive approach to characterizing the human p53 network that includes p53 levels, binding, expression and chromatin changes under diverse stresses. Human osteosarcoma U2OS cells treated with anti-cancer drugs Doxorubicin (DXR) or Nutlin-3 (Nutlin) led to strikingly different p53 gene binding patterns based on chromatin immunoprecipitation with high-throughput sequencing experiments. Although two contiguous RRRCWWGYYY decamers is the consensus binding motif, p53 can bind a single decamer and function in vivo. Although the number of sites bound by p53 was six times greater for Nutlin than DXR, expression changes induced by Nutlin were much less dramatic compared with DXR. Unexpectedly, the solvent dimethylsulphoxide (DMSO) alone induced p53 binding to many sites common to DXR; however, this binding had no effect on target gene expression. Together, these data imply a two-stage mechanism for p53 transactivation where p53 binding only constitutes the first stage. Furthermore, both p53 binding and transactivation were associated with increased active histone modification histone H3 lysine 4 trimethylation. We discovered 149 putative new p53 target genes including several that are relevant to tumor suppression, revealing potential new targets for cancer therapy and expanding our understanding of the p53 regulatory network. |
format | Online Article Text |
id | pubmed-3753631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-37536312013-08-27 Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells Menendez, Daniel Nguyen, Thuy-Ai Freudenberg, Johannes M. Mathew, Viju J. Anderson, Carl W. Jothi, Raja Resnick, Michael A. Nucleic Acids Res Gene Regulation, Chromatin and Epigenetics The effects of diverse stresses on promoter selectivity and transcription regulation by the tumor suppressor p53 are poorly understood. We have taken a comprehensive approach to characterizing the human p53 network that includes p53 levels, binding, expression and chromatin changes under diverse stresses. Human osteosarcoma U2OS cells treated with anti-cancer drugs Doxorubicin (DXR) or Nutlin-3 (Nutlin) led to strikingly different p53 gene binding patterns based on chromatin immunoprecipitation with high-throughput sequencing experiments. Although two contiguous RRRCWWGYYY decamers is the consensus binding motif, p53 can bind a single decamer and function in vivo. Although the number of sites bound by p53 was six times greater for Nutlin than DXR, expression changes induced by Nutlin were much less dramatic compared with DXR. Unexpectedly, the solvent dimethylsulphoxide (DMSO) alone induced p53 binding to many sites common to DXR; however, this binding had no effect on target gene expression. Together, these data imply a two-stage mechanism for p53 transactivation where p53 binding only constitutes the first stage. Furthermore, both p53 binding and transactivation were associated with increased active histone modification histone H3 lysine 4 trimethylation. We discovered 149 putative new p53 target genes including several that are relevant to tumor suppression, revealing potential new targets for cancer therapy and expanding our understanding of the p53 regulatory network. Oxford University Press 2013-08 2013-06-17 /pmc/articles/PMC3753631/ /pubmed/23775793 http://dx.doi.org/10.1093/nar/gkt504 Text en Published by Oxford University Press 2013. This work is written by US Government employees and is in the public domain in the US. |
spellingShingle | Gene Regulation, Chromatin and Epigenetics Menendez, Daniel Nguyen, Thuy-Ai Freudenberg, Johannes M. Mathew, Viju J. Anderson, Carl W. Jothi, Raja Resnick, Michael A. Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells |
title | Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells |
title_full | Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells |
title_fullStr | Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells |
title_full_unstemmed | Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells |
title_short | Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells |
title_sort | diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells |
topic | Gene Regulation, Chromatin and Epigenetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753631/ https://www.ncbi.nlm.nih.gov/pubmed/23775793 http://dx.doi.org/10.1093/nar/gkt504 |
work_keys_str_mv | AT menendezdaniel diversestressesdramaticallyaltergenomewidep53bindingandtransactivationlandscapeinhumancancercells AT nguyenthuyai diversestressesdramaticallyaltergenomewidep53bindingandtransactivationlandscapeinhumancancercells AT freudenbergjohannesm diversestressesdramaticallyaltergenomewidep53bindingandtransactivationlandscapeinhumancancercells AT mathewvijuj diversestressesdramaticallyaltergenomewidep53bindingandtransactivationlandscapeinhumancancercells AT andersoncarlw diversestressesdramaticallyaltergenomewidep53bindingandtransactivationlandscapeinhumancancercells AT jothiraja diversestressesdramaticallyaltergenomewidep53bindingandtransactivationlandscapeinhumancancercells AT resnickmichaela diversestressesdramaticallyaltergenomewidep53bindingandtransactivationlandscapeinhumancancercells |