Cargando…

Differences in Specificity and Selectivity Between CBP and p300 Acetylation of Histone H3 and H3/H4

[Image: see text] Although p300 and CBP lysine acetyltransferases are often treated interchangeably, the inability of one enzyme to compensate for the loss of the other suggests unique roles for each. As these deficiencies coincide with aberrant levels of histone acetylation, we hypothesized that th...

Descripción completa

Detalles Bibliográficos
Autores principales: Henry, Ryan A., Kuo, Yin-Ming, Andrews, Andrew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2013
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756530/
https://www.ncbi.nlm.nih.gov/pubmed/23862699
http://dx.doi.org/10.1021/bi400684q
Descripción
Sumario:[Image: see text] Although p300 and CBP lysine acetyltransferases are often treated interchangeably, the inability of one enzyme to compensate for the loss of the other suggests unique roles for each. As these deficiencies coincide with aberrant levels of histone acetylation, we hypothesized that the key difference between p300 and CBP activity is differences in their specificity/selectivity for lysines within the histones. Utilizing a label-free, quantitative mass spectrometry based technique, we determined the kinetic parameters of both CBP and p300 at each lysine of H3 and H4, under conditions we would expect to encounter in the cell (either limiting acetyl-CoA or histone). Our results show that while p300 and CBP acetylate many common residues on H3 and H4, they do in fact possess very different specificities, and these specificities are dependent on whether histone or acetyl-CoA is limiting. Steady-state experiments with limiting H3 demonstrate that both CBP and p300 acetylate H3K14, H3K18, H3K23, with p300 having specificities up to 10(10)-fold higher than CBP. Utilizing tetramer as a substrate, both enzymes also acetylate H4K5, H4K8, H4K12, and H4K16. With limiting tetramer, CBP displays higher specificities, especially at H3K18, where CBP specificity is 10(32)-fold higher than p300. With limiting acetyl-CoA, p300 has the highest specificity at H4K16, where specificity is 10(18)-fold higher than CBP. This discovery of unique specificity for targets of CBP- vs p300-mediated acetylation of histone lysine residues presents a new model for understanding their respective biological roles and possibly an opportunity for selective therapeutic intervention.