Cargando…
Spatial Memory and Long-Term Object Recognition Are Impaired by Circadian Arrhythmia and Restored by the GABA(A)Antagonist Pentylenetetrazole
Performance on many memory tests varies across the day and is severely impaired by disruptions in circadian timing. We developed a noninvasive method to permanently eliminate circadian rhythms in Siberian hamsters (Phodopussungorus) so that we could investigate the contribution of the circadian syst...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756994/ https://www.ncbi.nlm.nih.gov/pubmed/24009680 http://dx.doi.org/10.1371/journal.pone.0072433 |
Sumario: | Performance on many memory tests varies across the day and is severely impaired by disruptions in circadian timing. We developed a noninvasive method to permanently eliminate circadian rhythms in Siberian hamsters (Phodopussungorus) so that we could investigate the contribution of the circadian system to learning and memory in animals that are neurologically and genetically intact. Male and female adult hamsters were rendered arrhythmic by a disruptive phase shift protocol that eliminates cycling of clock genes within the suprachiasmatic nucleus (SCN), but preserves sleep architecture. These arrhythmic animals have deficits in spatial working memory and in long-term object recognition memory. In a T-maze, rhythmic control hamsters exhibited spontaneous alternation behavior late in the day and at night, but made random arm choices early in the day. By contrast, arrhythmic animals made only random arm choices at all time points. Control animals readily discriminated novel objects from familiar ones, whereas arrhythmic hamsters could not. Since the SCN is primarily a GABAergic nucleus, we hypothesized that an arrhythmic SCN could interfere with memory by increasing inhibition in hippocampal circuits. To evaluate this possibility, we administered the GABA(A) antagonist pentylenetetrazole (PTZ; 0.3 or 1.0 mg/kg/day) to arrhythmic hamsters for 10 days, which is a regimen previously shown to produce long-term improvements in hippocampal physiology and behavior in Ts65Dn (Down syndrome) mice. PTZ restored long-term object recognition and spatial working memory for at least 30 days after drug treatment without restoring circadian rhythms. PTZ did not augment memory in control (entrained) animals, but did increase their activity during the memory tests. Our findings support the hypothesis that circadian arrhythmia impairs declarative memory by increasing the relative influence of GABAergic inhibition in the hippocampus. |
---|