Cargando…

Anti-c-Met antibodies recognising a temperature sensitive epitope, inhibit cell growth

c-Met is a tyrosine receptor kinase which is activated by its ligand, the hepatocyte growth factor. Activation of c-Met leads to a wide spectrum of biological activities such as motility, angiogenesis, morphogenesis, cell survival and cell regeneration. c-Met is abnormally activated in many tumour t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, Julin S., Warbrick, Emma, Vojtesek, Borek, Hill, Jeffrey, Lane, David P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759663/
https://www.ncbi.nlm.nih.gov/pubmed/23859937
Descripción
Sumario:c-Met is a tyrosine receptor kinase which is activated by its ligand, the hepatocyte growth factor. Activation of c-Met leads to a wide spectrum of biological activities such as motility, angiogenesis, morphogenesis, cell survival and cell regeneration. c-Met is abnormally activated in many tumour types. Aberrant c-Met activation was found to induce tumour development, tumour cell migration and invasion, and the worst and final step in cancer progression, metastasis. In addition, c-Met activation in cells was also shown to confer resistance to apoptosis induced by UV damage or chemotherapeutic drugs. This study describes the development of monoclonal antibodies against c-Met as therapeutic molecules in cancer treatment/diagnostics. A panel of c-Met monoclonal antibodies was developed and characterised by epitope mapping, Western blotting, immunoprecipitation, agonist/antagonist effect in cell scatter assays and for their ability to recognise native c-Met by flow cytometry. We refer to these antibodies as Specifically Engaging Extracellular c-Met (seeMet). seeMet 2 and 13 bound strongly to native c-Met in flow cytometry and reduced SNU-5 cell growth. Interestingly, seeMet 2 binding was strongly reduced at 4°C when compared to 37°C. Detail mapping of the seeMet 2 epitope indicated a cryptic binding site hidden within the c-Met α-chain.