Cargando…
Characterization of the Structural and Functional Determinants of MANF/CDNF in Drosophila In Vivo Model
Mammalian MANF and CDNF proteins are evolutionarily conserved neurotrophic factors that can protect and repair mammalian dopaminergic neurons in vivo. In Drosophila, the sole MANF protein (DmManf) is needed for the maintenance of dopaminergic neurites and dopamine levels. Although both secreted and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760817/ https://www.ncbi.nlm.nih.gov/pubmed/24019940 http://dx.doi.org/10.1371/journal.pone.0073928 |
_version_ | 1782282795169611776 |
---|---|
author | Lindström, Riitta Lindholm, Päivi Kallijärvi, Jukka Yu, Li-ying Piepponen, T. Petteri Arumäe, Urmas Saarma, Mart Heino, Tapio I. |
author_facet | Lindström, Riitta Lindholm, Päivi Kallijärvi, Jukka Yu, Li-ying Piepponen, T. Petteri Arumäe, Urmas Saarma, Mart Heino, Tapio I. |
author_sort | Lindström, Riitta |
collection | PubMed |
description | Mammalian MANF and CDNF proteins are evolutionarily conserved neurotrophic factors that can protect and repair mammalian dopaminergic neurons in vivo. In Drosophila, the sole MANF protein (DmManf) is needed for the maintenance of dopaminergic neurites and dopamine levels. Although both secreted and intracellular roles for MANF and CDNF have been demonstrated, very little is known about the molecular mechanism of their action. Here, by using a transgenic rescue approach in the DmManf mutant background we show that only full-length MANF containing both the amino-terminal saposin-like and carboxy-terminal SAP-domains can rescue the larval lethality of the DmManf mutant. Independent N- or C-terminal domains of MANF, even when co-expressed together, fail to rescue. Deleting the signal peptide or mutating the CXXC motif in the C-terminal domain destroys the activity of full-length DmManf. Positively charged surface amino acids and the C-terminal endoplasmic reticulum retention signal are necessary for rescue of DmManf mutant lethality when DmManf is expressed in a restricted pattern. Furthermore, rescue experiments with non-ubiquitous expression reveals functional differences between the C-terminal domain of human MANF and CDNF. Finally, DmManf and its C-terminal domain rescue mammalian sympathetic neurons from toxin-induced apoptosis in vitro demonstrating functional similarity of the mammalian and fly proteins. Our study offers further insights into the functional conservation between invertebrate and mammalian MANF/CDNF proteins and reveals the importance of the C-terminal domain for MANF activity in vivo. |
format | Online Article Text |
id | pubmed-3760817 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37608172013-09-09 Characterization of the Structural and Functional Determinants of MANF/CDNF in Drosophila In Vivo Model Lindström, Riitta Lindholm, Päivi Kallijärvi, Jukka Yu, Li-ying Piepponen, T. Petteri Arumäe, Urmas Saarma, Mart Heino, Tapio I. PLoS One Research Article Mammalian MANF and CDNF proteins are evolutionarily conserved neurotrophic factors that can protect and repair mammalian dopaminergic neurons in vivo. In Drosophila, the sole MANF protein (DmManf) is needed for the maintenance of dopaminergic neurites and dopamine levels. Although both secreted and intracellular roles for MANF and CDNF have been demonstrated, very little is known about the molecular mechanism of their action. Here, by using a transgenic rescue approach in the DmManf mutant background we show that only full-length MANF containing both the amino-terminal saposin-like and carboxy-terminal SAP-domains can rescue the larval lethality of the DmManf mutant. Independent N- or C-terminal domains of MANF, even when co-expressed together, fail to rescue. Deleting the signal peptide or mutating the CXXC motif in the C-terminal domain destroys the activity of full-length DmManf. Positively charged surface amino acids and the C-terminal endoplasmic reticulum retention signal are necessary for rescue of DmManf mutant lethality when DmManf is expressed in a restricted pattern. Furthermore, rescue experiments with non-ubiquitous expression reveals functional differences between the C-terminal domain of human MANF and CDNF. Finally, DmManf and its C-terminal domain rescue mammalian sympathetic neurons from toxin-induced apoptosis in vitro demonstrating functional similarity of the mammalian and fly proteins. Our study offers further insights into the functional conservation between invertebrate and mammalian MANF/CDNF proteins and reveals the importance of the C-terminal domain for MANF activity in vivo. Public Library of Science 2013-09-03 /pmc/articles/PMC3760817/ /pubmed/24019940 http://dx.doi.org/10.1371/journal.pone.0073928 Text en © 2013 Lindström et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lindström, Riitta Lindholm, Päivi Kallijärvi, Jukka Yu, Li-ying Piepponen, T. Petteri Arumäe, Urmas Saarma, Mart Heino, Tapio I. Characterization of the Structural and Functional Determinants of MANF/CDNF in Drosophila In Vivo Model |
title | Characterization of the Structural and Functional Determinants of MANF/CDNF in Drosophila In Vivo Model |
title_full | Characterization of the Structural and Functional Determinants of MANF/CDNF in Drosophila In Vivo Model |
title_fullStr | Characterization of the Structural and Functional Determinants of MANF/CDNF in Drosophila In Vivo Model |
title_full_unstemmed | Characterization of the Structural and Functional Determinants of MANF/CDNF in Drosophila In Vivo Model |
title_short | Characterization of the Structural and Functional Determinants of MANF/CDNF in Drosophila In Vivo Model |
title_sort | characterization of the structural and functional determinants of manf/cdnf in drosophila in vivo model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760817/ https://www.ncbi.nlm.nih.gov/pubmed/24019940 http://dx.doi.org/10.1371/journal.pone.0073928 |
work_keys_str_mv | AT lindstromriitta characterizationofthestructuralandfunctionaldeterminantsofmanfcdnfindrosophilainvivomodel AT lindholmpaivi characterizationofthestructuralandfunctionaldeterminantsofmanfcdnfindrosophilainvivomodel AT kallijarvijukka characterizationofthestructuralandfunctionaldeterminantsofmanfcdnfindrosophilainvivomodel AT yuliying characterizationofthestructuralandfunctionaldeterminantsofmanfcdnfindrosophilainvivomodel AT piepponentpetteri characterizationofthestructuralandfunctionaldeterminantsofmanfcdnfindrosophilainvivomodel AT arumaeurmas characterizationofthestructuralandfunctionaldeterminantsofmanfcdnfindrosophilainvivomodel AT saarmamart characterizationofthestructuralandfunctionaldeterminantsofmanfcdnfindrosophilainvivomodel AT heinotapioi characterizationofthestructuralandfunctionaldeterminantsofmanfcdnfindrosophilainvivomodel |