Cargando…

Pertussis Toxin B-Pentamer Mediates Intercellular Transfer of Membrane Proteins and Lipids

Pertussis toxin (PTx) is the major virulence factor of Bordetella pertussis. The enzymatic or active (A) subunit inactivates host G protein coupled receptor (GPCR) signaling pathways. The non-enzymatic binding (B) subunit also mediates biological effects due to lectin-like binding characteristics, i...

Descripción completa

Detalles Bibliográficos
Autores principales: Millen, Scott H., Schneider, Olivia D., Miller, William E., Monaco, John J., Weiss, Alison A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760862/
https://www.ncbi.nlm.nih.gov/pubmed/24019885
http://dx.doi.org/10.1371/journal.pone.0072885
Descripción
Sumario:Pertussis toxin (PTx) is the major virulence factor of Bordetella pertussis. The enzymatic or active (A) subunit inactivates host G protein coupled receptor (GPCR) signaling pathways. The non-enzymatic binding (B) subunit also mediates biological effects due to lectin-like binding characteristics, including the induction of T cell receptor (TCR) signaling and subsequent down-regulation of chemokine receptor expression. Here we report another activity attributable to PTxB, facilitating transfer of membrane material between mammalian cells. This activity does not require the TCR, and does not require cell-to-cell contact or cellular aggregation. Rather, membrane vesicles are transferred from donor to recipient cells in a toxin-dependent fashion. Membrane transfer occurs in different cell types, including cultured human T cells, CHO cells, and human primary peripheral blood mononuclear cells. Transfer involves both lipid and integral membrane proteins, as evidenced by the transfer of T and B cell-specific receptor molecules to other PBMCs. Interestingly, membrane transfer activity is a property that PTx shares with some, but not all, cell-aggregating lectins that are mitogenic for human T cells, and appears to be related to the ability to bind certain host cell glycolipids. This phenomenon may represent another mechanism by which pertussis toxin disrupts mammalian intra- and inter-cellular signaling.