Cargando…

EGF regulates tyrosine phosphorylation and membrane-translocation of the scaffold protein Tks5

BACKGROUND: Tks5/FISH is a scaffold protein comprising of five SH3 domains and one PX domain. Tks5 is a substrate of the tyrosine kinase Src and is required for the organization of podosomes/invadopodia implicated in invasion of tumor cells. Recent data have suggested that a close homologue of Tks5,...

Descripción completa

Detalles Bibliográficos
Autores principales: Fekete, Anna, Bőgel, Gábor, Pesti, Szabolcs, Péterfi, Zalán, Geiszt, Miklós, Buday, László
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3765130/
https://www.ncbi.nlm.nih.gov/pubmed/23924390
http://dx.doi.org/10.1186/1750-2187-8-8
Descripción
Sumario:BACKGROUND: Tks5/FISH is a scaffold protein comprising of five SH3 domains and one PX domain. Tks5 is a substrate of the tyrosine kinase Src and is required for the organization of podosomes/invadopodia implicated in invasion of tumor cells. Recent data have suggested that a close homologue of Tks5, Tks4, is implicated in the EGF signaling. RESULTS: Here, we report that Tks5 is a component of the EGF signaling pathway. In EGF-treated cells, Tks5 is tyrosine phosphorylated within minutes and the level of phosphorylation is sustained for at least 2 hours. Using specific kinase inhibitors, we demonstrate that tyrosine phosphorylation of Tks5 is catalyzed by Src tyrosine kinase. We show that treatment of cells with EGF results in plasma membrane translocation of Tks5. In addition, treatment of cells with LY294002, an inhibitor of PI 3-kinase, or mutation of the PX domain reduces tyrosine phosphorylation and membrane translocation of Tks5. CONCLUSIONS: Our results identify Tks5 as a novel component of the EGF signaling pathway.