Cargando…

Circulating alpha-klotho levels are not disturbed in patients with type 2 diabetes with and without macrovascular disease in the absence of nephropathy

BACKGROUND: Diabetes is associated with a high incidence of macrovascular disease (MVD), including peripheral and coronary artery disease. Circulating soluble-Klotho (sKlotho) is produced in the kidney and is a putative anti-aging and vasculoprotective hormone. Reduced Klotho levels may therefore in...

Descripción completa

Detalles Bibliográficos
Autores principales: van Ark, Joris, Hammes, Hans-Peter, van Dijk, Marcory C R F, Vervloet, Marc G, Wolffenbuttel, Bruce H R, van Goor, Harry, Hillebrands, Jan-Luuk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3765553/
https://www.ncbi.nlm.nih.gov/pubmed/23945089
http://dx.doi.org/10.1186/1475-2840-12-116
Descripción
Sumario:BACKGROUND: Diabetes is associated with a high incidence of macrovascular disease (MVD), including peripheral and coronary artery disease. Circulating soluble-Klotho (sKlotho) is produced in the kidney and is a putative anti-aging and vasculoprotective hormone. Reduced Klotho levels may therefore increase cardiovascular risk in diabetes. We investigated if sKlotho levels are decreased in type 2 diabetes and associate with MVD in the absence of diabetic nephropathy, and whether hyperglycemia affects renal Klotho production in vitro and in vivo. METHODS: sKlotho levels were determined with ELISA in diabetic and non-diabetic patients with and without MVD, and healthy control subjects. Human renal tubular epithelial cells (TECs) were isolated and exposed to high glucose levels (15 and 30 mM) in vitro and Klotho levels were measured with qPCR and quantitative immunofluorescence. Klotho mRNA expression was quantified in kidneys obtained from long term (3 and 8 months) diabetic Ins2(Akita) mice and normoglycemic control mice. RESULTS: No significant differences in sKlotho levels were observed between diabetic patients with and without MVD (527 (433–704) pg/mL, n = 35), non-diabetic MVD patients (517 (349–571) pg/mL, n = 27), and healthy control subjects (435 (346–663) pg/mL, n = 15). High glucose (15 and 30 mM) did not alter Klotho expression in TECs. Long-term hyperglycemia in diabetic Ins2(Akita) mice (characterized by increased HbA1c levels [12.9 ± 0.3% (3 months) and 11.3 ± 2.0% (8 months)], p < 0.05 vs. non-diabetic mice) did not affect renal Klotho mRNA expression. CONCLUSIONS: These data indicate that sKlotho levels are not affected in type 2 diabetes patients with and without MVD. Furthermore, hyperglycemia per se does not affect renal Klotho production. As type 2 diabetes does not alter sKlotho levels, sKlotho does not seem to play a major role in the pathogenesis of MVD in type 2 diabetes.