Cargando…
Response surface methodology for optimization of production of lovastatin by solid state fermentation
Lovastatin, an inhibitor of HMG-CoA reductase, was produced by solid state fermentation (SSF) using a strain of Aspergillus terreus UV 1718. Different solid substrates and various combinations thereof were evaluated for lovastatin production. Wheat bran supported the maximum production (1458 ± 46 µg...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sociedade Brasileira de Microbiologia
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768617/ https://www.ncbi.nlm.nih.gov/pubmed/24031477 http://dx.doi.org/10.1590/S1517-838220100001000024 |
_version_ | 1782283827977125888 |
---|---|
author | Pansuriya, Ruchir C. Singhal, Rekha S. |
author_facet | Pansuriya, Ruchir C. Singhal, Rekha S. |
author_sort | Pansuriya, Ruchir C. |
collection | PubMed |
description | Lovastatin, an inhibitor of HMG-CoA reductase, was produced by solid state fermentation (SSF) using a strain of Aspergillus terreus UV 1718. Different solid substrates and various combinations thereof were evaluated for lovastatin production. Wheat bran supported the maximum production (1458 ± 46 µg g(-1) DFM) of lovastatin. Response surface methodology (RSM) was applied to optimize the medium constituents. A 2(4) full-factorial central composite design (CCD) was chosen to explain the combined effects of the four medium constituents, viz. moisture content, particle size of the substrate, di -potassium hydrogen phosphate and trace ion solution concentration. Maximum lovastatin production of 2969 µg g(-1) DFM was predicted by the quadratic model which was verified experimentally to be 3004 ± 25 μg g(-1) DFM. Further RSM optimized medium supplemented with mycological, peptone supported highest yield of 3723.4±49 µg g(-1) DFM. Yield of lovastatin increased to 2.5 fold as with compared to un-optimized media. |
format | Online Article Text |
id | pubmed-3768617 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Sociedade Brasileira de Microbiologia |
record_format | MEDLINE/PubMed |
spelling | pubmed-37686172013-09-12 Response surface methodology for optimization of production of lovastatin by solid state fermentation Pansuriya, Ruchir C. Singhal, Rekha S. Braz J Microbiol Industrial Microbiology Lovastatin, an inhibitor of HMG-CoA reductase, was produced by solid state fermentation (SSF) using a strain of Aspergillus terreus UV 1718. Different solid substrates and various combinations thereof were evaluated for lovastatin production. Wheat bran supported the maximum production (1458 ± 46 µg g(-1) DFM) of lovastatin. Response surface methodology (RSM) was applied to optimize the medium constituents. A 2(4) full-factorial central composite design (CCD) was chosen to explain the combined effects of the four medium constituents, viz. moisture content, particle size of the substrate, di -potassium hydrogen phosphate and trace ion solution concentration. Maximum lovastatin production of 2969 µg g(-1) DFM was predicted by the quadratic model which was verified experimentally to be 3004 ± 25 μg g(-1) DFM. Further RSM optimized medium supplemented with mycological, peptone supported highest yield of 3723.4±49 µg g(-1) DFM. Yield of lovastatin increased to 2.5 fold as with compared to un-optimized media. Sociedade Brasileira de Microbiologia 2010 2010-03-01 /pmc/articles/PMC3768617/ /pubmed/24031477 http://dx.doi.org/10.1590/S1517-838220100001000024 Text en © Sociedade Brasileira de Microbiologia http://creativecommons.org/licenses/by-nc/3.0/ All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License |
spellingShingle | Industrial Microbiology Pansuriya, Ruchir C. Singhal, Rekha S. Response surface methodology for optimization of production of lovastatin by solid state fermentation |
title | Response surface methodology for optimization of production of lovastatin by solid state fermentation |
title_full | Response surface methodology for optimization of production of lovastatin by solid state fermentation |
title_fullStr | Response surface methodology for optimization of production of lovastatin by solid state fermentation |
title_full_unstemmed | Response surface methodology for optimization of production of lovastatin by solid state fermentation |
title_short | Response surface methodology for optimization of production of lovastatin by solid state fermentation |
title_sort | response surface methodology for optimization of production of lovastatin by solid state fermentation |
topic | Industrial Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768617/ https://www.ncbi.nlm.nih.gov/pubmed/24031477 http://dx.doi.org/10.1590/S1517-838220100001000024 |
work_keys_str_mv | AT pansuriyaruchirc responsesurfacemethodologyforoptimizationofproductionoflovastatinbysolidstatefermentation AT singhalrekhas responsesurfacemethodologyforoptimizationofproductionoflovastatinbysolidstatefermentation |