Cargando…
Characterization of a Self-sufficient Trans-Anethole Oxygenase from Pseudomonas putida JYR-1
A novel flavoprotein monooxygenase, trans-anethole oxygenase (TAO), from Pseudomonas putida JYR-1, which is capable of catalyzing the oxidation of trans-anethole to p-anisaldehyde, was heterologously expressed in E. coli and purified. Enzymatic kinetics of diverse substrates and cofactors revealed t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774712/ https://www.ncbi.nlm.nih.gov/pubmed/24066043 http://dx.doi.org/10.1371/journal.pone.0073350 |
Sumario: | A novel flavoprotein monooxygenase, trans-anethole oxygenase (TAO), from Pseudomonas putida JYR-1, which is capable of catalyzing the oxidation of trans-anethole to p-anisaldehyde, was heterologously expressed in E. coli and purified. Enzymatic kinetics of diverse substrates and cofactors revealed that TAO is likely to be a novel self-sufficient flavoprotein monooxygenase. Enzyme assays of GST-TAO demonstrated that TAO catalyzed a trans-anethole oxidation reaction without auxiliary component enzyme-like electron-transfer flavin reductases. The single component TAO had the ability to reduce flavin cofactors and simultaneously oxidize trans-anthole to p-anisaldehyde. In the processes of reduction of flavin and oxidation of trans-anethole, TAO accepted various flavin and NAD(P)H cofactors. TAO also catalyzed oxidation of isoeugenol, O-methyl isoeugenol, and isosafrole, all of which contain the 2-propenyl functional group on the aromatic ring structure with different catalytic efficiency. TAO had the greatest catalytic efficiency (k (cat)/K (m)) with the original substrate, trans-anethole. Investigation about partially deleted mutants of TAO indicated that reductase active sites appeared to be located near the N terminal. Site directed mutagenesis studies also proved that the proposed flavin binding sites, Trp-38, Thr-43, Tyr-55, were critical for flavin reduction. However, disruption of any portion of TAO eliminated the oxygenase activity. |
---|