Cargando…
Nonmetabolic functions of pyruvate kinase isoform M2 in controlling cell cycle progression and tumorigenesis
Pyruvate kinase catalyzes the rate-limiting final step of glycolysis, generating adenosine triphosphate (ATP) and pyruvate. The M2 tumor-specific isoform of pyruvate kinase (PKM2) promotes glucose uptake and lactate production in the presence of oxygen, known as aerobic glycolysis or the Warburg eff...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sun Yat-sen University Cancer Center
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777463/ https://www.ncbi.nlm.nih.gov/pubmed/22200182 http://dx.doi.org/10.5732/cjc.011.10446 |
Sumario: | Pyruvate kinase catalyzes the rate-limiting final step of glycolysis, generating adenosine triphosphate (ATP) and pyruvate. The M2 tumor-specific isoform of pyruvate kinase (PKM2) promotes glucose uptake and lactate production in the presence of oxygen, known as aerobic glycolysis or the Warburg effect. As recently reported in Nature, PKM2, besides its metabolic function, has a nonmetabolic function in the direct control of cell cycle progression by activating β-catenin and inducing expression of the β-catenin downstream gene CCND1 (encoding for cyclin D1). This nonmetabolic function of PKM2 is essential for epidermal growth factor receptor (EGFR) activation-induced tumorigenesis. |
---|