Cargando…
Progress and challenges in the computational prediction of gene function using networks
In this opinion piece, we attempt to unify recent arguments we have made that serious confounds affect the use of network data to predict and characterize gene function. The development of computational approaches to determine gene function is a major strand of computational genomics research. Howev...
Autores principales: | Pavlidis, Paul, Gillis, Jesse |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782350/ https://www.ncbi.nlm.nih.gov/pubmed/23936626 http://dx.doi.org/10.12688/f1000research.1-14.v1 |
Ejemplares similares
-
Progress and challenges in the computational prediction of gene function using networks: 2012-2013 update
por: Pavlidis, Paul, et al.
Publicado: (2013) -
Characterizing the state of the art in the computational assignment of gene function: lessons from the first critical assessment of functional annotation (CAFA)
por: Gillis, Jesse, et al.
Publicado: (2013) -
“Guilt by Association” Is the Exception Rather Than the Rule in Gene Networks
por: Gillis, Jesse, et al.
Publicado: (2012) -
Using predictive specificity to determine when gene set analysis is biologically meaningful
por: Ballouz, Sara, et al.
Publicado: (2017) -
Meta-analysis of gene coexpression networks in the post-mortem prefrontal cortex of patients with schizophrenia and unaffected controls
por: Mistry, Meeta, et al.
Publicado: (2013)