Cargando…
The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S
Microglia are thought to play important roles in the maintenance of neuronal circuitry and the regulation of behavior. We found that the cortical microglia contain an intrinsic molecular clock and exhibit a circadian expression of cathepsin S (CatS), a microglia-specific lysosomal cysteine protease...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783043/ https://www.ncbi.nlm.nih.gov/pubmed/24067868 http://dx.doi.org/10.1038/srep02744 |
_version_ | 1782285627124875264 |
---|---|
author | Hayashi, Yoshinori Koyanagi, Satoru Kusunose, Naoki Okada, Ryo Wu, Zhou Tozaki-Saitoh, Hidetoshi Ukai, Kiyoharu Kohsaka, Shinichi Inoue, Kazuhide Ohdo, Shigehiro Nakanishi, Hiroshi |
author_facet | Hayashi, Yoshinori Koyanagi, Satoru Kusunose, Naoki Okada, Ryo Wu, Zhou Tozaki-Saitoh, Hidetoshi Ukai, Kiyoharu Kohsaka, Shinichi Inoue, Kazuhide Ohdo, Shigehiro Nakanishi, Hiroshi |
author_sort | Hayashi, Yoshinori |
collection | PubMed |
description | Microglia are thought to play important roles in the maintenance of neuronal circuitry and the regulation of behavior. We found that the cortical microglia contain an intrinsic molecular clock and exhibit a circadian expression of cathepsin S (CatS), a microglia-specific lysosomal cysteine protease in the brain. The genetic deletion of CatS causes mice to exhibit hyperlocomotor activity and removes diurnal variations in the synaptic activity and spine density of the cortical neurons, which are significantly higher during the dark (waking) phase than the light (sleeping) phase. Furthermore, incubation with recombinant CatS significantly reduced the synaptic activity of the cortical neurons. These results suggest that CatS secreted by microglia during the dark-phase decreases the spine density of the cortical neurons by modifying the perisynaptic environment, leading to downscaling of the synaptic strength during the subsequent light-phase. Disruption of CatS therefore induces hyperlocomotor activity due to failure to downscale the synaptic strength. |
format | Online Article Text |
id | pubmed-3783043 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-37830432013-09-25 The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S Hayashi, Yoshinori Koyanagi, Satoru Kusunose, Naoki Okada, Ryo Wu, Zhou Tozaki-Saitoh, Hidetoshi Ukai, Kiyoharu Kohsaka, Shinichi Inoue, Kazuhide Ohdo, Shigehiro Nakanishi, Hiroshi Sci Rep Article Microglia are thought to play important roles in the maintenance of neuronal circuitry and the regulation of behavior. We found that the cortical microglia contain an intrinsic molecular clock and exhibit a circadian expression of cathepsin S (CatS), a microglia-specific lysosomal cysteine protease in the brain. The genetic deletion of CatS causes mice to exhibit hyperlocomotor activity and removes diurnal variations in the synaptic activity and spine density of the cortical neurons, which are significantly higher during the dark (waking) phase than the light (sleeping) phase. Furthermore, incubation with recombinant CatS significantly reduced the synaptic activity of the cortical neurons. These results suggest that CatS secreted by microglia during the dark-phase decreases the spine density of the cortical neurons by modifying the perisynaptic environment, leading to downscaling of the synaptic strength during the subsequent light-phase. Disruption of CatS therefore induces hyperlocomotor activity due to failure to downscale the synaptic strength. Nature Publishing Group 2013-09-25 /pmc/articles/PMC3783043/ /pubmed/24067868 http://dx.doi.org/10.1038/srep02744 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Article Hayashi, Yoshinori Koyanagi, Satoru Kusunose, Naoki Okada, Ryo Wu, Zhou Tozaki-Saitoh, Hidetoshi Ukai, Kiyoharu Kohsaka, Shinichi Inoue, Kazuhide Ohdo, Shigehiro Nakanishi, Hiroshi The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S |
title | The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S |
title_full | The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S |
title_fullStr | The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S |
title_full_unstemmed | The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S |
title_short | The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S |
title_sort | intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin s |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783043/ https://www.ncbi.nlm.nih.gov/pubmed/24067868 http://dx.doi.org/10.1038/srep02744 |
work_keys_str_mv | AT hayashiyoshinori theintrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT koyanagisatoru theintrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT kusunosenaoki theintrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT okadaryo theintrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT wuzhou theintrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT tozakisaitohhidetoshi theintrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT ukaikiyoharu theintrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT kohsakashinichi theintrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT inouekazuhide theintrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT ohdoshigehiro theintrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT nakanishihiroshi theintrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT hayashiyoshinori intrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT koyanagisatoru intrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT kusunosenaoki intrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT okadaryo intrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT wuzhou intrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT tozakisaitohhidetoshi intrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT ukaikiyoharu intrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT kohsakashinichi intrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT inouekazuhide intrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT ohdoshigehiro intrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins AT nakanishihiroshi intrinsicmicroglialmolecularclockcontrolssynapticstrengthviathecircadianexpressionofcathepsins |