Cargando…
Relative Contributions of Norepinephrine and Serotonin Transporters to Antinociceptive Synergy between Monoamine Reuptake Inhibitors and Morphine in the Rat Formalin Model
Multimodal analgesia is designed to optimize pain relief by coadministering drugs with distinct mechanisms of action or by combining multiple pharmacologies within a single molecule. In clinical settings, combinations of monoamine reuptake inhibitors and opioid receptor agonists have been explored a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787017/ https://www.ncbi.nlm.nih.gov/pubmed/24098676 http://dx.doi.org/10.1371/journal.pone.0074891 |
_version_ | 1782477819895349248 |
---|---|
author | Shen, Fei Tsuruda, Pamela R. Smith, Jacqueline A. M. Obedencio, Glenmar P. Martin, William J. |
author_facet | Shen, Fei Tsuruda, Pamela R. Smith, Jacqueline A. M. Obedencio, Glenmar P. Martin, William J. |
author_sort | Shen, Fei |
collection | PubMed |
description | Multimodal analgesia is designed to optimize pain relief by coadministering drugs with distinct mechanisms of action or by combining multiple pharmacologies within a single molecule. In clinical settings, combinations of monoamine reuptake inhibitors and opioid receptor agonists have been explored and one currently available analgesic, tapentadol, functions as both a µ-opioid receptor agonist and a norepinephrine transporter inhibitor. However, it is unclear whether the combination of selective norepinephrine reuptake inhibition and µ-receptor agonism achieves an optimal antinociceptive synergy. In this study, we assessed the pharmacodynamic interactions between morphine and monoamine reuptake inhibitors that possess different affinities and selectivities for norepinephrine and serotonin transporters. Using the rat formalin model, in conjunction with measurements of ex vivo transporter occupancy, we show that neither the norepinephrine-selective inhibitor, esreboxetine, nor the serotonin-selective reuptake inhibitor, fluoxetine, produce antinociceptive synergy with morphine. Atomoxetine, a monoamine reuptake inhibitor that achieves higher levels of norepinephrine than serotonin transporter occupancy, exhibited robust antinociceptive synergy with morphine. Similarly, a fixed-dose combination of esreboxetine and fluoxetine which achieves comparable levels of transporter occupancy potentiated the antinociceptive response to morphine. By contrast, duloxetine, a monoamine reuptake inhibitor that achieves higher serotonin than norepinephrine transporter occupancy, failed to potentiate the antinociceptive response to morphine. However, when duloxetine was coadministered with the 5-HT(3) receptor antagonist, ondansetron, potentiation of the antinociceptive response to morphine was revealed. These results support the notion that inhibition of both serotonin and norepinephrine transporters is required for monoamine reuptake inhibitor and opioid-mediated antinociceptive synergy; yet, excess serotonin, acting via 5-HT(3) receptors, may reduce the potential for synergistic interactions. Thus, in the rat formalin model, the balance between norepinephrine and serotonin transporter inhibition influences the degree of antinociceptive synergy observed between monoamine reuptake inhibitors and morphine. |
format | Online Article Text |
id | pubmed-3787017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37870172013-10-04 Relative Contributions of Norepinephrine and Serotonin Transporters to Antinociceptive Synergy between Monoamine Reuptake Inhibitors and Morphine in the Rat Formalin Model Shen, Fei Tsuruda, Pamela R. Smith, Jacqueline A. M. Obedencio, Glenmar P. Martin, William J. PLoS One Research Article Multimodal analgesia is designed to optimize pain relief by coadministering drugs with distinct mechanisms of action or by combining multiple pharmacologies within a single molecule. In clinical settings, combinations of monoamine reuptake inhibitors and opioid receptor agonists have been explored and one currently available analgesic, tapentadol, functions as both a µ-opioid receptor agonist and a norepinephrine transporter inhibitor. However, it is unclear whether the combination of selective norepinephrine reuptake inhibition and µ-receptor agonism achieves an optimal antinociceptive synergy. In this study, we assessed the pharmacodynamic interactions between morphine and monoamine reuptake inhibitors that possess different affinities and selectivities for norepinephrine and serotonin transporters. Using the rat formalin model, in conjunction with measurements of ex vivo transporter occupancy, we show that neither the norepinephrine-selective inhibitor, esreboxetine, nor the serotonin-selective reuptake inhibitor, fluoxetine, produce antinociceptive synergy with morphine. Atomoxetine, a monoamine reuptake inhibitor that achieves higher levels of norepinephrine than serotonin transporter occupancy, exhibited robust antinociceptive synergy with morphine. Similarly, a fixed-dose combination of esreboxetine and fluoxetine which achieves comparable levels of transporter occupancy potentiated the antinociceptive response to morphine. By contrast, duloxetine, a monoamine reuptake inhibitor that achieves higher serotonin than norepinephrine transporter occupancy, failed to potentiate the antinociceptive response to morphine. However, when duloxetine was coadministered with the 5-HT(3) receptor antagonist, ondansetron, potentiation of the antinociceptive response to morphine was revealed. These results support the notion that inhibition of both serotonin and norepinephrine transporters is required for monoamine reuptake inhibitor and opioid-mediated antinociceptive synergy; yet, excess serotonin, acting via 5-HT(3) receptors, may reduce the potential for synergistic interactions. Thus, in the rat formalin model, the balance between norepinephrine and serotonin transporter inhibition influences the degree of antinociceptive synergy observed between monoamine reuptake inhibitors and morphine. Public Library of Science 2013-09-30 /pmc/articles/PMC3787017/ /pubmed/24098676 http://dx.doi.org/10.1371/journal.pone.0074891 Text en © 2013 Shen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Shen, Fei Tsuruda, Pamela R. Smith, Jacqueline A. M. Obedencio, Glenmar P. Martin, William J. Relative Contributions of Norepinephrine and Serotonin Transporters to Antinociceptive Synergy between Monoamine Reuptake Inhibitors and Morphine in the Rat Formalin Model |
title | Relative Contributions of Norepinephrine and Serotonin Transporters to Antinociceptive Synergy between Monoamine Reuptake Inhibitors and Morphine in the Rat Formalin Model |
title_full | Relative Contributions of Norepinephrine and Serotonin Transporters to Antinociceptive Synergy between Monoamine Reuptake Inhibitors and Morphine in the Rat Formalin Model |
title_fullStr | Relative Contributions of Norepinephrine and Serotonin Transporters to Antinociceptive Synergy between Monoamine Reuptake Inhibitors and Morphine in the Rat Formalin Model |
title_full_unstemmed | Relative Contributions of Norepinephrine and Serotonin Transporters to Antinociceptive Synergy between Monoamine Reuptake Inhibitors and Morphine in the Rat Formalin Model |
title_short | Relative Contributions of Norepinephrine and Serotonin Transporters to Antinociceptive Synergy between Monoamine Reuptake Inhibitors and Morphine in the Rat Formalin Model |
title_sort | relative contributions of norepinephrine and serotonin transporters to antinociceptive synergy between monoamine reuptake inhibitors and morphine in the rat formalin model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787017/ https://www.ncbi.nlm.nih.gov/pubmed/24098676 http://dx.doi.org/10.1371/journal.pone.0074891 |
work_keys_str_mv | AT shenfei relativecontributionsofnorepinephrineandserotonintransporterstoantinociceptivesynergybetweenmonoaminereuptakeinhibitorsandmorphineintheratformalinmodel AT tsurudapamelar relativecontributionsofnorepinephrineandserotonintransporterstoantinociceptivesynergybetweenmonoaminereuptakeinhibitorsandmorphineintheratformalinmodel AT smithjacquelineam relativecontributionsofnorepinephrineandserotonintransporterstoantinociceptivesynergybetweenmonoaminereuptakeinhibitorsandmorphineintheratformalinmodel AT obedencioglenmarp relativecontributionsofnorepinephrineandserotonintransporterstoantinociceptivesynergybetweenmonoaminereuptakeinhibitorsandmorphineintheratformalinmodel AT martinwilliamj relativecontributionsofnorepinephrineandserotonintransporterstoantinociceptivesynergybetweenmonoaminereuptakeinhibitorsandmorphineintheratformalinmodel |