Cargando…

Mechanism of amyloid β−protein dimerization determined using single−molecule AFM force spectroscopy

Aβ42 and Aβ40 are the two primary alloforms of human amyloid β−protein (Aβ). The two additional C−terminal residues of Aβ42 result in elevated neurotoxicity compared with Aβ40, but the molecular mechanism underlying this effect remains unclear. Here, we used single−molecule force microscopy to chara...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Zhengjian, Roychaudhuri, Robin, Condron, Margaret M., Teplow, David B., Lyubchenko, Yuri L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791449/
https://www.ncbi.nlm.nih.gov/pubmed/24096987
http://dx.doi.org/10.1038/srep02880
Descripción
Sumario:Aβ42 and Aβ40 are the two primary alloforms of human amyloid β−protein (Aβ). The two additional C−terminal residues of Aβ42 result in elevated neurotoxicity compared with Aβ40, but the molecular mechanism underlying this effect remains unclear. Here, we used single−molecule force microscopy to characterize interpeptide interactions for Aβ42 and Aβ40 and corresponding mutants. We discovered a dramatic difference in the interaction patterns of Aβ42 and Aβ40 monomers within dimers. Although the sequence difference between the two peptides is at the C−termini, the N−terminal segment plays a key role in the peptide interaction in the dimers. This is an unexpected finding as N−terminal was considered as disordered segment with no effect on the Aβ peptide aggregation. These novel properties of Aβ proteins suggests that the stabilization of N−terminal interactions is a switch in redirecting of amyloids form the neurotoxic aggregation pathway, opening a novel avenue for the disease preventions and treatments.