Cargando…

Diabetic Hyperglycemia activates CaMKII and Arrhythmias by O linked Glycosylation

Ca(2+)-Calmodulin dependent protein kinase II (CaMKII) is a regulatory node in heart and brain, and its chronic activation can be pathological. CaMKII activation seen in heart failure can directly induce pathological changes in ion channels, Ca(2+) handling and gene transcription.(1) Here we discove...

Descripción completa

Detalles Bibliográficos
Autores principales: Erickson, Jeffrey R., Pereira, Laetitia, Wang, Lianguo, Han, Guanghui, Ferguson, Amanda, Dao, Khanha, Copeland, Ronald J., Despa, Florin, Hart, Gerald W., Ripplinger, Crystal M., Bers, Donald M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3801227/
https://www.ncbi.nlm.nih.gov/pubmed/24077098
http://dx.doi.org/10.1038/nature12537
Descripción
Sumario:Ca(2+)-Calmodulin dependent protein kinase II (CaMKII) is a regulatory node in heart and brain, and its chronic activation can be pathological. CaMKII activation seen in heart failure can directly induce pathological changes in ion channels, Ca(2+) handling and gene transcription.(1) Here we discover a novel mechanism linking CaMKII and hyperglycemic signaling in diabetes mellitus, which is a key risk factor for heart(2) and neurodegenerative diseases.(3,4) Acute hyperglycemia causes covalent modification of CaMKII by O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAc modification of CaMKII at Ser-279 activates CaMKII autonomously, creating molecular memory even after [Ca(2+)] declines. O-GlcNAc modified CaMKII is increased in heart and brain from diabetic humans and rats. In cardiomyocytes, increased [glucose] significantly enhances CaMKII-dependent activation of spontaneous sarcoplasmic reticulum (SR) Ca(2+) release events that can contribute to cardiac mechanical dysfunction and arrhythmias.(1) These effects were prevented by pharmacological inhibition of O-GlcNAc signaling or genetic ablation of CaMKIIδ. In intact perfused hearts, arrhythmias were enhanced by increased [glucose] via O-GlcNAc-and CaMKII-dependent pathways. In diabetic animals, acute blockade of O-GlcNAc inhibited arrhythmogenesis. Thus, O-GlcNAc modification of CaMKII is a novel signaling event in pathways that may contribute critically to cardiac and neuronal pathophysiology in diabetes and other diseases.