Cargando…
Function of the C. elegans T-box factor TBX-2 depends on SUMOylation
T-box transcription factors are critical developmental regulators in all multi-cellular organisms, and altered T-box factor activity is associated with a variety of human congenital diseases and cancers. Despite the biological significance of T-box factors, their mechanism of action is not well unde...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Basel
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3802552/ https://www.ncbi.nlm.nih.gov/pubmed/23595631 http://dx.doi.org/10.1007/s00018-013-1336-y |
Sumario: | T-box transcription factors are critical developmental regulators in all multi-cellular organisms, and altered T-box factor activity is associated with a variety of human congenital diseases and cancers. Despite the biological significance of T-box factors, their mechanism of action is not well understood. Here we examine whether SUMOylation affects the function of the C. elegans Tbx2 sub-family T-box factor TBX-2. We have previously shown that TBX-2 interacts with the E2 SUMO-conjugating enzyme UBC-9, and that loss of TBX-2 or UBC-9 produces identical defects in ABa-derived pharyngeal muscle development. We now show that TBX-2 is SUMOylated in mammalian cell assays, and that both UBC-9 interaction and SUMOylation depends on two SUMO consensus sites located in the T-box DNA binding domain and near the TBX-2 C-terminus, respectively. In co-transfection assays, a TBX-2:GAL4 fusion protein represses expression of a 5xGal4:tk:luciferase construct. However, this activity does not require SUMOylation, indicating SUMO is not generally required for TBX-2 repressor activity. In C. elegans, reducing SUMOylation enhances the phenotype of a temperature-sensitive tbx-2 mutant and results in ectopic expression of a gene normally repressed by TBX-2, demonstrating that SUMOylation is important for TBX-2 function in vivo. Finally, we show mammalian orthologs of TBX-2, Tbx2, and Tbx3, can also be SUMOylated, suggesting SUMOylation may be a conserved mechanism controlling T-box factor activity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00018-013-1336-y) contains supplementary material, which is available to authorized users. |
---|