Cargando…
C-Peptide Activates AMPKα and Prevents ROS-Mediated Mitochondrial Fission and Endothelial Apoptosis in Diabetes
Vasculopathy is a major complication of diabetes; however, molecular mechanisms mediating the development of vasculopathy and potential strategies for prevention have not been identified. We have previously reported that C-peptide prevents diabetic vasculopathy by inhibiting reactive oxygen species...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806599/ https://www.ncbi.nlm.nih.gov/pubmed/23884890 http://dx.doi.org/10.2337/db13-0039 |
_version_ | 1782288398054064128 |
---|---|
author | Bhatt, Mahendra Prasad Lim, Young-Cheol Kim, Young-Myeong Ha, Kwon-Soo |
author_facet | Bhatt, Mahendra Prasad Lim, Young-Cheol Kim, Young-Myeong Ha, Kwon-Soo |
author_sort | Bhatt, Mahendra Prasad |
collection | PubMed |
description | Vasculopathy is a major complication of diabetes; however, molecular mechanisms mediating the development of vasculopathy and potential strategies for prevention have not been identified. We have previously reported that C-peptide prevents diabetic vasculopathy by inhibiting reactive oxygen species (ROS)-mediated endothelial apoptosis. To gain further insight into ROS-dependent mechanism of diabetic vasculopathy and its prevention, we studied high glucose–induced cytosolic and mitochondrial ROS production and its effect on altered mitochondrial dynamics and apoptosis. For the therapeutic strategy, we investigated the vasoprotective mechanism of C-peptide against hyperglycemia-induced endothelial damage through the AMP-activated protein kinase α (AMPKα) pathway using human umbilical vein endothelial cells and aorta of diabetic mice. High glucose (33 mmol/L) increased intracellular ROS through a mechanism involving interregulation between cytosolic and mitochondrial ROS generation. C-peptide (1 nmol/L) activation of AMPKα inhibited high glucose–induced ROS generation, mitochondrial fission, mitochondrial membrane potential collapse, and endothelial cell apoptosis. Additionally, the AMPK activator 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside and the antihyperglycemic drug metformin mimicked protective effects of C-peptide. C-peptide replacement therapy normalized hyperglycemia-induced AMPKα dephosphorylation, ROS generation, and mitochondrial disorganization in aorta of diabetic mice. These findings highlight a novel mechanism by which C-peptide activates AMPKα and protects against hyperglycemia-induced vasculopathy. |
format | Online Article Text |
id | pubmed-3806599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-38065992014-11-01 C-Peptide Activates AMPKα and Prevents ROS-Mediated Mitochondrial Fission and Endothelial Apoptosis in Diabetes Bhatt, Mahendra Prasad Lim, Young-Cheol Kim, Young-Myeong Ha, Kwon-Soo Diabetes Original Research Vasculopathy is a major complication of diabetes; however, molecular mechanisms mediating the development of vasculopathy and potential strategies for prevention have not been identified. We have previously reported that C-peptide prevents diabetic vasculopathy by inhibiting reactive oxygen species (ROS)-mediated endothelial apoptosis. To gain further insight into ROS-dependent mechanism of diabetic vasculopathy and its prevention, we studied high glucose–induced cytosolic and mitochondrial ROS production and its effect on altered mitochondrial dynamics and apoptosis. For the therapeutic strategy, we investigated the vasoprotective mechanism of C-peptide against hyperglycemia-induced endothelial damage through the AMP-activated protein kinase α (AMPKα) pathway using human umbilical vein endothelial cells and aorta of diabetic mice. High glucose (33 mmol/L) increased intracellular ROS through a mechanism involving interregulation between cytosolic and mitochondrial ROS generation. C-peptide (1 nmol/L) activation of AMPKα inhibited high glucose–induced ROS generation, mitochondrial fission, mitochondrial membrane potential collapse, and endothelial cell apoptosis. Additionally, the AMPK activator 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside and the antihyperglycemic drug metformin mimicked protective effects of C-peptide. C-peptide replacement therapy normalized hyperglycemia-induced AMPKα dephosphorylation, ROS generation, and mitochondrial disorganization in aorta of diabetic mice. These findings highlight a novel mechanism by which C-peptide activates AMPKα and protects against hyperglycemia-induced vasculopathy. American Diabetes Association 2013-11 2013-10-18 /pmc/articles/PMC3806599/ /pubmed/23884890 http://dx.doi.org/10.2337/db13-0039 Text en © 2013 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Original Research Bhatt, Mahendra Prasad Lim, Young-Cheol Kim, Young-Myeong Ha, Kwon-Soo C-Peptide Activates AMPKα and Prevents ROS-Mediated Mitochondrial Fission and Endothelial Apoptosis in Diabetes |
title | C-Peptide Activates AMPKα and Prevents ROS-Mediated Mitochondrial Fission and Endothelial Apoptosis in Diabetes |
title_full | C-Peptide Activates AMPKα and Prevents ROS-Mediated Mitochondrial Fission and Endothelial Apoptosis in Diabetes |
title_fullStr | C-Peptide Activates AMPKα and Prevents ROS-Mediated Mitochondrial Fission and Endothelial Apoptosis in Diabetes |
title_full_unstemmed | C-Peptide Activates AMPKα and Prevents ROS-Mediated Mitochondrial Fission and Endothelial Apoptosis in Diabetes |
title_short | C-Peptide Activates AMPKα and Prevents ROS-Mediated Mitochondrial Fission and Endothelial Apoptosis in Diabetes |
title_sort | c-peptide activates ampkα and prevents ros-mediated mitochondrial fission and endothelial apoptosis in diabetes |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806599/ https://www.ncbi.nlm.nih.gov/pubmed/23884890 http://dx.doi.org/10.2337/db13-0039 |
work_keys_str_mv | AT bhattmahendraprasad cpeptideactivatesampkaandpreventsrosmediatedmitochondrialfissionandendothelialapoptosisindiabetes AT limyoungcheol cpeptideactivatesampkaandpreventsrosmediatedmitochondrialfissionandendothelialapoptosisindiabetes AT kimyoungmyeong cpeptideactivatesampkaandpreventsrosmediatedmitochondrialfissionandendothelialapoptosisindiabetes AT hakwonsoo cpeptideactivatesampkaandpreventsrosmediatedmitochondrialfissionandendothelialapoptosisindiabetes |