Cargando…

AMP-activated protein kinase and pancreatic/duodenal homeobox-1 involved in insulin secretion under high leucine exposure in rat insulinoma β-cells

The effect of leucine on glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells is quite controversial, and mechanism involved in the effect has not been elucidated yet. Consequently, we aimed to investigate effect of leucine on GSIS and its mechanism focusing on contribution of AMP-activ...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiujuan, Sun, Nannan, Wang, Laicheng, Guo, Hua, Guan, Qingbo, Cui, Bin, Tian, Limin, Gao, Ling, Zhao, Jiajun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822882/
https://www.ncbi.nlm.nih.gov/pubmed/19438972
http://dx.doi.org/10.1111/j.1582-4934.2009.00656.x
Descripción
Sumario:The effect of leucine on glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells is quite controversial, and mechanism involved in the effect has not been elucidated yet. Consequently, we aimed to investigate effect of leucine on GSIS and its mechanism focusing on contribution of AMP-activated protein kinase (AMPK) and pancreatic/duodenal homeobox-1 (PDX-1). Rat insulinoma β-cells (INS-1, RIN m5F, DN-PDX-1#28 and PDX-1#6) were cultured with or without leucine, AICAR (AMPK agonist) or compound C (AMPK antagonist) for 48 hrs. In contrast to control, AICAR treatment decreased GSIS at high glucose and insulin content, also impaired protein and mRNA expression of PDX-1 and its downstream targets, glucokinase (GCK) and glucose transporter 2 (GLUT2). Compound C treatment had the opposite effects. We observed that neither AICAR nor compound C could affect expression of GCK and GLUT2 when PDX-1 expression was absent. Chronic leucine exposure inhibited GSIS at high glucose and insulin content in a dose-dependent manner, concomitant with an increase in AMPK and a decrease in PDX-1, GCK and GLUT2. The inhibitory effects of leucine was potentiated by AICAR treatment and rescued by compound C treatment. Finally, the inhibition of PDX-1 could potentiate the impaired effects induced by leucine whereas overexpression of PDX-1 could protect the cell from impairment induced by leucine. The study indicated that chronic leucine might result in an increase in AMPK and then a decrease in PDX-l, in turn to depress GCK and GLUT2 resulting in decreased GSIS at high glucose and insulin content.