Cargando…
Structural insights into H(+)-coupled multidrug extrusion by a MATE transporter
Multidrug and toxic compound extrusion (MATE) transporters contribute to multidrug resistance by coupling the efflux of drugs to the influx of Na(+) or H(+). Known structures of Na(+)-coupled, extracellular-facing MATE transporters from the NorM subfamily revealed twelve membrane-spanning segments r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825517/ https://www.ncbi.nlm.nih.gov/pubmed/24141706 http://dx.doi.org/10.1038/nsmb.2687 |
Sumario: | Multidrug and toxic compound extrusion (MATE) transporters contribute to multidrug resistance by coupling the efflux of drugs to the influx of Na(+) or H(+). Known structures of Na(+)-coupled, extracellular-facing MATE transporters from the NorM subfamily revealed twelve membrane-spanning segments related by a quasi-twofold rotational symmetry and a multidrug-binding cavity situated near the membrane surface. Here we report the crystal structure of an H(+)-coupled MATE transporter from Bacillus halodurans and the DinF subfamily at 3.2 Å-resolution, unveiling a surprisingly asymmetric arrangement of twelve transmembrane helices. We also identified a membrane-embedded substrate-binding chamber by combining crystallographic and biochemical analyses. Our studies further suggested a direct competition between H(+) and substrate during DinF-mediated transport, and how a MATE transporter alternates between its extracellular- and intracellular-facing conformations to propel multidrug extrusion. Collectively, our results demonstrated hitherto unrecognized mechanistic diversity among MATE transporters. |
---|