Cargando…

DICER1 hotspot mutations in non-epithelial gonadal tumours

BACKGROUND: Non-epithelial gonadal tumours largely comprise sex cord-stromal tumours (SCSTs) and germ cell tumours (GCTs). Specific somatic mutations in DICER1, a microRNA maturation pathway gene, have been identified in these tumours. We conducted a study that aimed to confirm, refine and extend th...

Descripción completa

Detalles Bibliográficos
Autores principales: Witkowski, L, Mattina, J, Schönberger, S, Murray, M J, Huntsman, D G, Reis-Filho, J S, McCluggage, W G, Nicholson, J C, Coleman, N, Calaminus, G, Schneider, D T, Arseneau, J, Stewart, C J R, Foulkes, W D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833222/
https://www.ncbi.nlm.nih.gov/pubmed/24136150
http://dx.doi.org/10.1038/bjc.2013.637
Descripción
Sumario:BACKGROUND: Non-epithelial gonadal tumours largely comprise sex cord-stromal tumours (SCSTs) and germ cell tumours (GCTs). Specific somatic mutations in DICER1, a microRNA maturation pathway gene, have been identified in these tumours. We conducted a study that aimed to confirm, refine and extend the previous observations. METHODS: We used Sanger sequencing to sequence the RNase IIIa and IIIb domains of DICER1 in 154 gonadal tumours from 135 females and 19 males, as well as 43 extra-gonadal GCTs from 26 females and 17 males. RESULTS: We identified heterozygous non-synonymous mutations in the RNase IIIb domain of DICER1 in 14/197 non-epithelial tumours (7.1%). Mutations were found in 9/28 SCSTs (32%), 5/118 gonadal GCTs (4.2%), 0/43 extra-gonadal GCTs and 0/8 miscellaneous tumours. The 14 mutations affected only five residues: E1705, D1709, E1788, D1810 and E1813. In all five patients where matched and constitutional DNA was available, the mutations were only somatic. There were no mutations found in the RNase IIIa domain. CONCLUSION: More than half (8/15) of Sertoli–Leydig cell tumours (SLCTs) harbour DICER1 mutations in the RNase IIIb domain, while mutations are rarely found in GCTs. Genetic alterations in SLCTs may aid in classification and provide new approaches to therapy.